A new kind of chiral zirconium-based metal–organic framework, l-Cys-PCN-222, was synthesized by the SALI method and utilized as the chiral stationary phase in a capillary electrochromatography system for enantioseparation.
A novel chiral stationary phase (CSP) of Zr-based metal-organic framework, l-Cys-PCN-224, was prepared by one-pot method and applied for the enantioseparation by capillary electrochromatography. The CSP was characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectra, nitrogen adsorption/desorption, circular dichroism spectrum, zeta-potential, and so on. The results revealed that the CSP had good crystallinity, high specific surface area (2580 m 2 /g), and good thermal stability. Meanwhile, the cross-section of l-Cys-PCN-224-bonded opentubular (OT) column was observed by a scanning electron microscope, which proved the successful bonding of l-Cys-PCN-224 particles to the inner wall. Relative standard deviations of the column efficiencies were 3.87%-9.14%, and not obviously changed after 200 runs, which indicated that l-Cys-PCN-224-bonded OT column had the better stability and reproducibility. Excellent chiral separation performance was verified with nine kinds of natural amino acids including acidic, neutral, and basic as the analytes. All amino acids studied achieved good separation with the resolution of 1.38-13.9 and selector factor of 1.11-3.71. These results demonstrated that the CSP had an excellent potential in the chiral separation field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.