tert-Butylperoxy radicals add to C(60) selectively to form multi-adducts C(60)(O)(m)(OO(t)Bu)(n) (m = 0, n = 2, 4, 6; m = 1, n = 0, 2, 4, 6) in moderate yields under various conditions. Visible light irradiation favors epoxide formation. High concentration of tert-butylperoxy radicals mainly produces the hexa-homoadduct C(60)(OO(t)Bu)(6) 6; low concentration and long reaction time favor the epoxy-containing C(60)(O)(OO(t)Bu)(4) 7. The reaction can be stopped at the bis-adducts with limited TBHP. A stepwise addition mechanism is discussed involving mono-, allyl-, and cyclopentadienyl C(60) radical intermediates. m-CPBA reacts with the 1,4-bis-adduct to form C(60)(O)(OO(t)Bu)(2) and C(60)(O)(3)(OO(t)Bu)(2). The C-O bond of the epoxy ring in 7 can be cleaved with HNO(3) and CF(3)COOH. Nucleophilic addition of NaOMe to 7 follows the S(N)1 and extended S(N)2' mechanism, from which four products are isolated with the general formula C(60)(O)(a)(OH)(b)(OMe)(c)(OO(t)Bu)(d). Visible light irradiation of the hexa-adduct 6 results in partial cleavage of both the C-O and O-O bonds of peroxide moieties and formation of the cage-opened compound C(60)(O)(O)(2)(OO(t)Bu)(4). All the fullerene derivatives are characterized by spectroscopic data. A single-crystal structure has been obtained for an isomer of C(60)(O)(OH)(2)(OMe)(4)(OO(t)Bu)(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.