Considering the influence of user equipment voltage tolerance characteristics and sag types on the evaluation results, this paper proposes a voltage sag severity evaluation method for the system side which considers the influence of the voltage tolerance curve and sag type. As such, a quantitative evaluation of the severity of voltage sag events can be achieved. Firstly, the user’s voltage tolerance curve is used to construct the comparison reference value of the energy index, in order to realize the rapid analysis of the severity of the sag event in the normal area and the abnormal area. Secondly, aiming at the problem of insufficient descriptions of the severity difference of sag events in uncertain areas, an improved energy index evaluation model combined with user tolerance characteristics is established through an interval division and interval weight calculation, so as to divide and evaluate the severity of sag events in uncertain areas. Considering the influence of the sag type on the voltage tolerance curve and user equipment, the energy index correction factor is then constructed, and the measurement function is used for an interval evaluation to obtain the ranking result of the voltage sag severity, which is more in line with the actual situation. Finally, the rationality and effectiveness of the proposed method are verified by analyzing 24 voltage sag events at a monitoring node.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.