Upon recognition of viral components by pattern recognition receptors, including TLRs and retinoic acid-inducible gene I (RIG-I)- like helicases, cells are activated to produce type I IFN and proinflammatory cytokines. These pathways are tightly regulated by host to prevent inappropriate cellular response, but viruses can down-regulate these pathways for their survival. Recently, identification of negative regulators for cytoplasmic RNA-mediated antiviral signaling, especially the RIG-I pathway, attract much attention. However, there is no report about negative regulation of RIG-I antiviral pathway by microRNAs (miRNA) to date. We found that vesicular stomatitis virus (VSV) infection up-regulated miR-146a expression in mouse macrophages in TLR-myeloid differentiation factor 88-independent but RIG-I-NF-κB-dependent manner. In turn, miR-146a negatively regulated VSV-triggered type I IFN production, thus promoting VSV replication in macrophages. In addition to two known miR-146a targets, TRAF6 and IRAK1, we proved that IRAK2 was another target of miR-146a, which also participated in VSV-induced type I IFN production. Furthermore, IRAK1 and IRAK2 participated in VSV-induced type I IFN production by associating with Fas-associated death domain protein, an important adaptor in RIG-I signaling, in a VSV infection-inducible manner. Therefore, we demonstrate that miR-146a, up-regulated during viral infection, is a negative regulator of the RIG-I-dependent antiviral pathway by targeting TRAF6, IRAK1, and IRAK2.
Interferon-γ (IFN-γ) has a critical role in immune responses to intracellular bacterial infection. MicroRNAs (miRNAs) are important in the regulation of innate and adaptive immunity. However, whether miRNAs can directly target IFN-γ and regulate IFN-γ production post-transcriptionally remains unknown. Here we show that infection of mice with Listeria monocytogenes or Mycobacterium bovis bacillus Calmette-Guérin (BCG) downregulated miR-29 expression in IFN-γ-producing natural killer cells, CD4(+) T cells and CD8(+) T cells. Moreover, miR-29 suppressed IFN-γ production by directly targeting IFN-γ mRNA. We developed mice with transgenic expression of a 'sponge' target to compete with endogenous miR-29 targets (GS29 mice). We found higher serum concentrations of IFN-γ and lower L. monocytogenes burdens in L. monocytogenes-infected GS29 mice than in their littermates. GS29 mice had enhanced T helper type 1 (T(H)1) responses and greater resistance to infection with BCG or Mycobacterium tuberculosis. Therefore, miR-29 suppresses immune responses to intracellular pathogens by targeting IFN-γ.
Effective recognition of viral infection and subsequent triggering of antiviral innate immune responses are essential for the host antiviral defense, which is tightly regulated by multiple regulators, including microRNAs. Our previous study showed that a panel of microRNAs, including miR-155, was markedly upregulated in macrophages upon vesicular stomatitis virus infection; however, the biological function of miR-155 during viral infection remains unknown. In this paper, we show that RNA virus infection induces miR-155 expression in macrophages via TLR/MyD88-independent but retinoic acid-inducible gene I/JNK/NF-κB–dependent pathway. And the inducible miR-155 feedback promotes type I IFN signaling, thus suppressing viral replication. Furthermore, suppressor of cytokine signaling 1 (SOCS1), a canonical negative regulator of type I IFN signaling, is targeted by miR-155 in macrophages, and SOCS1 knockdown mediates the enhancing effect of miR-155 on type I IFN-mediated antiviral response. Therefore, we demonstrate that inducible miR-155 feedback positively regulates host antiviral innate immune response by promoting type I IFN signaling via targeting SOCS1.
Intracellular nucleic acid sensors detect microbial RNA and DNA and trigger the production of type I interferon. However, the cytosolic nucleic acid-sensing system remains to be fully identified. Here we show that the cytosolic nucleic acid-binding protein LRRFIP1 contributed to the production of interferon-beta (IFN-beta) induced by vesicular stomatitis virus (VSV) and Listeria monocytogenes in macrophages. LRRFIP1 bound exogenous nucleic acids and increased the expression of IFN-beta induced by both double-stranded RNA and double-stranded DNA. LRRFIP1 interacted with beta-catenin and promoted the activation of beta-catenin, which increased IFN-beta expression by binding to the C-terminal domain of the transcription factor IRF3 and recruiting the acetyltransferase p300 to the IFN-beta enhanceosome via IRF3. Therefore, LRRFIP1 and its downstream partner beta-catenin constitute another coactivator pathway for IRF3-mediated production of type I interferon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.