In this report, graphene oxide-Fe(3)O(4) magnetic nanocomposites were demonstrated to possess intrinsic peroxidase-like activity and enhanced affinity toward H(2)O(2). The nanocomposites retain their magnetic properties and can be effectively separated by a magnet. Significantly, they were proved to be novel peroxidase mimetics which could quickly catalyze oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H(2)O(2), producing a blue-colored solution. Kinetic analysis indicates that the catalytic behavior is in accord with typical Michaelis-Menten kinetics and follows a ping-pong mechanism. On the basis of the high activity, the reaction provides a simple, sensitive and selective method for colorimetric detection of glucose in diabetic urine.
In this paper, we discovered that ZnFe(2)O(4) magnetic nanoparticles (MNPs) possess intrinsic peroxidase-like activity. ZnFe(2)O(4) MNPs exhibit several advantages such as high catalytic efficiency, good stability, monodispersion, and rapid separation over other peroxidase nanomimetics and horseradish peroxidase (HRP). ZnFe(2)O(4) MNPs were used as a colorimetric biosensor for the detection of urine glucose. This method is simple, inexpensive, highly sensitive, and selective for glucose detection using glucose oxidase (GOx) and ZnFe(2)O(4) MNPs with a linear range from 1.25 × 10(-6) to 1.875 × 10(-5) mol L(-1) with a detection limit of 3.0 × 10(-7) mol L(-1). The color change observable by the naked eyes based on the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) is the principle for the sensing of urine glucose level.
Carbon quantum dots (C-Dots) have drawn extensive attention in recent years due to their stable physicochemical and photochemical properties. However, the development of nitrogen-doped carbon quantum dots (N-doped C-Dots) is still on its early stage. In this paper, a facile and high-output solid-phase synthesis approach was proposed for the fabrication of N-doped, highly fluorescent carbon quantum dots. The obtained N-doped C-Dots exhibited a strong blue emission with an absolute quantum yield (QY) of up to 31%, owing to fluorescence enhancement effect of introduced N atoms into carbon dots. The strong coordination of oxygen-rich groups on N-doped C-Dots to Fe(3+) caused fluorescence quenching via nonradiative electron-transfer, leading to the quantitative detection of Fe(3+). The probe exhibited a wide linear response concentration range (0.01-500 μM) to Fe(3+) with a detection limit of 2.5 nM. Significantly, the N-doped C-Dots possess negligible cytotoxicity, excellent biocompatibility, and high photostability. All these features are favorable for label-free monitoring of Fe(3+) in complex biological samples. It was then successfully applied for the fluorescence imaging of intracellular Fe(3+). As an efficient chemosensor, the N-doped C-Dots hold great promise to broaden applications in biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.