SAMHD1 is a dGTP-activated deoxynucleoside triphosphate triphosphohydrolase (dNTPase) whose dNTPase activity has been linked to HIV/SIV restriction. The mechanism of its dGTPactivated dNTPase function remains unclear. Recent data also indicate that SAMHD1 regulates retrotransposition of LINE-1 elements. Here we report the 1.8-Å crystal structure of homotetrameric SAMHD1 in complex with the allosteric activator and substrate dGTP/dATP. The structure indicates the mechanism of dGTP-dependent tetramer formation, which requires the cooperation of three subunits and two dGTP/dATP molecules at each allosteric site. Allosteric dGTP binding induces conformational changes at the active site, allowing a more stable interaction with the substrate and explaining the dGTP-induced SAMHD1 dNTPase activity. Mutations of dGTP binding residues in the allosteric site affect tetramer formation, dNTPase activity and HIV-1 restriction. dGTP-triggered tetramer formation is also important for SAMHD1-mediated LINE-1 regulation. The structural and functional information provided here should facilitate future investigation of SAMHD1 function, including dNTPase activity, LINE-1 modulation and HIV-1 restriction.
Human maltase-glucoamylase (MGAM) hydrolyzes linear alpha-1,4-linked oligosaccharide substrates, playing a crucial role in the production of glucose in the human lumen and acting as an efficient drug target for type 2 diabetes and obesity. The amino-and carboxyl-terminal portions of MGAM (MGAM-N and MGAM-C) carry out the same catalytic reaction but have different substrate specificities. In this study, we report crystal structures of MGAM-C alone at a resolution of 3.1 Å, and in complex with its inhibitor acarbose at a resolution of 2.9 Å. Structural studies, combined with biochemical analysis, revealed that a segment of 21 amino acids in the active site of MGAM-C forms additional sugar subsites (+ 2 and + 3 subsites), accounting for the preference for longer substrates of MAGM-C compared with that of MGAM-N. Moreover, we discovered that a single mutation of Trp1251 to tyrosine in MGAM-C imparts a novel catalytic ability to digest branched alpha-1,6-linked oligosaccharides. These results provide important information for understanding the substrate specificity of alphaglucosidases during the process of terminal starch digestion, and for designing more efficient drugs to control type 2 diabetes or obesity.
Human protoporphyrinogen IX oxidase (hPPO), a mitochondrial inner membrane protein, converts protoporphyrinogen IX to protoporphyrin IX in the heme biosynthetic pathway. Mutations in the hPPO gene cause the inherited human disease variegate porphyria (VP). In this study, we report the crystal structure of hPPO in complex with the coenzyme flavin adenine dinucleotide (FAD) and the inhibitor acifluorfen at a resolution of 1.9 Å. The structural and biochemical analyses revealed the molecular details of FAD and acifluorfen binding to hPPO as well as the interactions of the substrate with hPPO. Structural analysis and gel chromatography indicated that hPPO is a monomer rather than a homodimer in vitro. The founder-effect mutation R59W in VP patients is most likely caused by a severe electrostatic hindrance in the hydrophilic binding pocket involving the bulky, hydrophobic indolyl ring of the tryptophan. Forty-seven VP-causing mutations were purified by chromatography and kinetically characterized in vitro. The effect of each mutation was demonstrated in the high-resolution crystal structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.