BackgroundOrganisms need to adapt to keep pace with a changing environment. Examining recent range expansion aids our understanding of how organisms evolve to overcome environmental constraints. However, how organisms adapt to climate changes is a crucial biological question that is still largely unanswered. The plant Arabidopsis thaliana is an excellent system to study this fundamental question. Its origin is in the Iberian Peninsula and North Africa, but it has spread to the Far East, including the most south-eastern edge of its native habitats, the Yangtze River basin, where the climate is very different.ResultsWe sequenced 118 A. thaliana strains from the region surrounding the Yangtze River basin. We found that the Yangtze River basin population is a unique population and diverged about 61,409 years ago, with gene flows occurring at two different time points, followed by a population dispersion into the Yangtze River basin in the last few thousands of years. Positive selection analyses revealed that biological regulation processes, such as flowering time, immune and defense response processes could be correlated with the adaptation event. In particular, we found that the flowering time gene SVP has contributed to A. thaliana adaptation to the Yangtze River basin based on genetic mapping.Conclusions A. thaliana adapted to the Yangtze River basin habitat by promoting the onset of flowering, a finding that sheds light on how a species can adapt to locales with very different climates.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-017-1378-9) contains supplementary material, which is available to authorized users.
Transposable elements (TEs) are mobile genetic elements with very high mutation rates that play important roles in shaping genome architecture and regulating phenotypic variation. However, the extent to which TEs influence the adaptation of organisms in their natural habitats is largely unknown. Here, we scanned 201 representative resequenced genomes from the model plant Arabidopsis thaliana and identified 2,311 polymorphic TEs from noncentromeric regions. We found expansion and contraction of different types of TEs in different A. thaliana populations. More importantly, we identified two TE insertions that are likely candidates to play a role in adaptive evolution. Our results highlight the importance of variations in TEs for the adaptation of plants in general in the context of rapid global climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.