EC activation and dysfunction have been linked to a variety of vascular inflammatory disease states. The function of microRNAs (miRNAs) in vascular EC activation and inflammation remains poorly understood. Herein, we report that microRNA-181b (miR-181b) serves as a potent regulator of downstream NF-κB signaling in the vascular endothelium by targeting importin-α3, a protein that is required for nuclear translocation of NF-κB. Overexpression of miR-181b inhibited importin-α3 expression and an enriched set of NF-κB-responsive genes such as adhesion molecules VCAM-1 and E-selectin in ECs in vitro and in vivo. In addition, treatment of mice with proinflammatory stimuli reduced miR-181b expression. Rescue of miR-181b levels by systemic administration of miR-181b "mimics" reduced downstream NF-κB signaling and leukocyte influx in the vascular endothelium and decreased lung injury and mortality in endotoxemic mice. In contrast, miR-181b inhibition exacerbated endotoxin-induced NF-κB activity, leukocyte influx, and lung injury. Finally, we observed that critically ill patients with sepsis had reduced levels of miR-181b compared with control intensive care unit (ICU) subjects. Collectively, these findings demonstrate that miR-181b regulates NF-κB-mediated EC activation and vascular inflammation in response to proinflammatory stimuli and that rescue of miR-181b expression could provide a new target for antiinflammatory therapy and critical illness.
Rationale Activated nuclear factor (NF)-κB signaling in the vascular endothelium promotes the initiation and progression of atherosclerosis. Targeting endothelial NF-κB may provide a novel strategy to limit chronic inflammation. Objective To examine the role of microRNA-181b (miR-181b) in endothelial NF-κB signaling and effects on atherosclerosis. Methods and Results MiR-181b expression was reduced in the aortic intima and plasma in apolipoprotein E–deficient mice fed a high-fat diet. Correspondingly, circulating miR-181b in the plasma was markedly reduced in human subjects with coronary artery disease. Systemic delivery of miR-181b resulted in a 2.3-fold overexpression of miR-181b in the aortic intima of apolipoprotein E–deficient mice and suppressed NF-κB signaling revealed by bioluminescence imaging and reduced target gene expression in the aortic arch in apolipoprotein E–deficient/NF-κB-luciferase transgenic mice. MiR-181b significantly inhibited atherosclerotic lesion formation, proinflammatory gene expression and the influx of lesional macrophages and CD4+ T cells in the vessel wall. Mechanistically, miR-181b inhibited the expression of the target gene importin-α3, an effect that reduced NF-κB nuclear translocation specifically in the vascular endothelium of lesions, whereas surprisingly leukocyte NF-κB signaling was unaffected despite a 7-fold overexpression of miR-181b. Our findings uncover that NF-κB nuclear translocation in leukocytes does not involve importin-α3, but rather importin-α5, which miR-181b does not target, highlighting that inhibition of NF-κB signaling in the endothelium is sufficient to mediate miR-181b's protective effects. Conclusions Systemic delivery of miR-181b inhibits the activation of NF-κB and atherosclerosis through cell-specific mechanisms in the vascular endothelium. These findings support the rationale that delivery of miR-181b may provide a novel therapeutic approach to treat chronic inflammatory diseases such as atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.