The rapid motorization of cities has led to the increasingly serious contradiction between supply and demand of road resources, and intersections have become the main bottleneck of traffic congestion. In general, capacity and delay are often used as indicators to improve intersection efficiency, but auxiliary indicators such as vehicle emissions that contribute to sustainable traffic development also need to be considered. It is necessary to evaluate intersection traffic efficiency through multiple measures to reflect different aspects of traffic, and these measures may conflict with each other. Therefore, this paper studies a multi-objective urban traffic signal timing problem, which requires a reasonable signal timing parameter under a given traffic flow condition, to better take into account the traffic capacity, delay and exhaust emission index of the intersection. Firstly, based on the traffic flow as the basic data, combined with the traffic flow description theory and exhaust emission estimation rules, a multi-objective model of signal timing problem is established. Secondly, the target model is solved and tested by the genetic algorithm of non-dominated sorting framework. It is found that the Pareto solution set of traffic indicators obtained by NSGA-III has a larger domain. Finally, the search mechanism of evolutionary algorithm is essentially unconstrained, while the actual traffic signal timing problem is constrained by traffic environment. In order to obtain a better signal timing scheme, this paper introduces the method of combining hybrid constraint strategy and NSGA-III framework, abbreviated as HCNSGA-III. The simulation experiment was carried out based on the same target model. The simulated results were compared with the actual scheme and the timing scheme obtained in recent research. The results show that the indices of traffic capacity, delay and exhaust emission obtained by the proposed method have more obvious advantages.
Urban intersections are one of the most common sources of traffic congestion. Especially for multiple intersections, an appropriate control method should be able to regulate the traffic flow within the control area. The intersection signal-timing problem is crucial for ensuring efficient traffic operations, with the key issues being the determination of a traffic model and the design of an optimization algorithm. So, an optimization method for signalized intersections integrating a multi-objective model and an NSGAIII-DAE algorithm is established in this paper. Firstly, the multi-objective model is constructed including the usual signal control delay and traffic capacity indices. In addition, the conflict delay caused by right-turning vehicles crossing straight-going non-motor vehicles is considered and combined with the proposed algorithm, enabling the traffic model to better balance the traffic efficiency of intersections without adding infrastructure. Secondly, to address the challenges of diversity and convergence faced by the classic NSGA-III algorithm in solving traffic models with high-dimensional search spaces, a denoising autoencoder (DAE) is adopted to learn the compact representation of the original high-dimensional search space. Some genetic operations are performed in the compressed space and then mapped back to the original search space through the DAE. As a result, an appropriate balance between the local and global searching in an iteration can be achieved. To validate the proposed method, numerical experiments were conducted using actual traffic data from intersections in Jinzhou, China. The numerical results show that the signal control delay and conflict delay are significantly reduced compared with the existing algorithm, and the optimal reduction is 33.7% and 31.3%, respectively. The capacity value obtained by the proposed method in this paper is lower than that of the compared algorithm, but it is also 11.5% higher than that of the current scheme in this case. The comparisons and discussions demonstrate the effectiveness of the proposed method designed for improving the efficiency of signalized intersections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.