Crowd counting, i.e., estimation number of the pedestrian in crowd images, is emerging as an important research problem with the public security applications. A key component for the crowd counting systems is the construction of counting models which are robust to various scenarios under facts such as camera perspective and physical barriers. In this paper, we present an adaptive scenario discovery framework for crowd counting. The system is structured with two parallel pathways that are trained with different sizes of the receptive field to represent different scales and crowd densities. After ensuring that these components are present in the proper geometric configuration, a third branch is designed to adaptively recalibrate the pathway-wise responses by discovering and modeling the dynamic scenarios implicitly. Our system is able to represent highly variable crowd images and achieves state-of-the-art results in two challenging benchmarks.
Texts from scene images typically consist of several characters and exhibit a characteristic sequence structure. Existing methods capture the structure with the sequence-tosequence models by an encoder to have the visual representations and then a decoder to translate the features into the label sequence. In this paper, we study text recognition framework by considering the long-term temporal dependencies in the encoder stage. We demonstrate that the proposed Temporal Convolutional Encoder with increased sequential extents improves the accuracy of text recognition. We also study the impact of different attention modules in convolutional blocks for learning accurate text representations. We conduct comparisons on seven datasets and the experiments demonstrate the effectiveness of our proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.