Arrhythmia is a disease that threatens human life. Therefore, timely diagnosis of arrhythmia is of great significance in preventing heart disease and sudden cardiac death. The BiLSTM-Attention neural network model with heartbeat activity's global sequence features can effectively improve the accuracy of heartbeat classification. Firstly, the noise is removed by the continuous wavelet transform method. Secondly, the peak of the R wave is detected by the tagged database, and then the P-QRS-T wave morphology and the RR interval are extracted. This feature set is heartbeat activity's global sequence features, which combines single heartbeat morphology and 21 consecutive RR intervals. Finally, the Bi-LSTM algorithm and the BiLSTM-Attention algorithm are used to identify heartbeat category respectively, and the MIT-BIH arrhythmia database is used to verify the algorithm. The results show that the BiLSTM-Attention model combined with heartbeat activity's global sequence features has higher interpretability than other methods discussed in this paper.
Myocardial infarction (MI) is an acute disease. Early detection and early treatment are of great significance for improving the health of people. In order to reduce the misdiagnosis rate of MI diseases, this paper proposes a multi-lead bidirectional gated recurrent unit neural network (ML-BiGRU) learning algorithm based on current research status in the field of intelligent medical diagnosis, combined with the timing and multi-lead correlation characteristics of the electrocardiogram (ECG) signals. At first, the original ECG signal is denoised and preprocessed and then segmented into heartbeats. After that, the heartbeat sequence is sent to the deep neural network training model to learn the classification. Lastly, the Physikalisch-Technische Bundesanstalt (PTB) ECG database is used to verify the multi-lead BiGRU algorithm. The verification results demonstrate that the accuracy of the algorithm for MI localization is 99.84%, which outperform the other algorithms. The experimental results also show that the algorithm is obviously superior to the traditional localization algorithm in improving the localization accuracy, which is of great significance for improving the correct diagnosis rate of MI. Electrocardiogram, myocardial infarction, multi-lead, Bi-GRU.
INDEX TERMS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.