Background MicroRNAs (miRNAs) play crucial roles in varieties of cancers, particularly in tumorigenesis, progression, and migration. Dysregulation of miR-28 was reported to occur in various types of human malignancies. In humans, two different mature miRNA sequences are excised from opposite arms of the stem-loop pre-miR-28, hsa-miR-28-3p and hsamiR-28-5p. However, the expression and distinct role of miR-28-3p and miR-28-5p in nasopharyngeal carcinoma (NPC) remain undetermined. Methods The expressions of miR-28-3p/-5p in human NPC tissues were tested by quantitative real-time PCR. miR-28-3p/-5p were overexpressed by mimics and silenced by inhibitors. The roles of miR-28-3p/-5p in NPC development were studied using cultured HONE-1 cells. Results The mRNA expression levels of miR-28-3p and -5p were significantly decreased in NPC tissues in comparison with adjacent normal tissues. Overexpression of miR-28-5p suppressed NPC cell proliferation and induced cell cycle arrest and apoptosis, while miR-28-3p promoted NPC cell migration and invasion. The miRNAs effected on different signal pathways: miR-28-5p altered expression of cyclin D1 and influenced the PI3K/AKT signaling pathway. In contrast, miR-28-3p downregulated Nm23-H1 and accelerated the process of EMT. Conclusion miR-28-3p and -5p were both downregulated in NPC tissues but had distinct biological effects in NPC cells. They may serve as potential prognostic markers and therapeutic targets for NPC.
IntroductionAntidifferentiation noncoding RNA (ANCR) is a newly identified long noncoding RNA, which is reported to function as an oncogene in multiple human cancers. However, its function in nasopharyngeal carcinoma (NPC) and underlying mechanism are still unclear.Materials and methodsWe explored the expression of ANCR in NPC tissues and cells by real-time PCR and analyzed the relationship between ANCR expression and clinicopathological characteristics of NPC patients by Pearson’s chi-squared test. Then we inhibited ANCR expression in NPC cells using siRNAs and evaluated the effect of ANCR expression on cell proliferation, colony formation, and radiosensitivity by cell counting kit-8 assay and colony formation assay. We used RT-PCR and Western blot analyses to search target genes of ANCR. Also, we used RNA immunoprecipitation (RIP) assay and chromatin immunoprecipitation assay to study the molecular mechanism in this regulation.ResultsWe found that ANCR was upregulated in NPC tissues and cells. ANCR expression was significantly correlated with tumor size and TNM stage. Further, ANCR knockdown inhibited NPC cell growth and radiation resistance. Mechanistically, we found that PTEN was upregulated in ANCR knockdown NPC cells. In addition, RIP assay indicated that EZH2, the oncogenic histone methyltransferase of polycomb repressive complex 2, interacted with ANCR in NPC cells. More importantly, the binding of EZH2 and deposition of relevant negative histone marker H3K27me3 on PTEN promoter depended on ANCR expression.ConclusionANCR expression is upregulated in NPC and promotes NPC growth and radiation resistance through an epigenetic regulation of PTEN expression.
TBX2 is a member of the T box transcription factor family. Its expression and potential biological functions in nasopharyngeal cancer (NPC) cells are studied here. We showed that TBX2 mRNA and protein expression was significantly elevated in multiple human NPC tissues, as compared with that in adjacent normal tissues. Knockdown of TBX2 by targeted-siRNA significantly inhibited proliferation and invasion of NPC cells (CNE-1 and HONE-1 lines). Meanwhile, TBX2 knockdown also induced G1-phase cell cycle arrest. At the molecular level, we discovered that expressions of several tumor suppressor genes, including p21, p27, phosphatase with tensin homology (PTEN) and E-Cadherin, were increased dramatically after TBX2 knockdown in above NPC cells. Collectively, our results imply that TBX2 over-expression promotes NPC cell proliferation and invasion, possibly via silencing several key tumor suppressor genes.
The polysulfide shuttling and restricted kinetics of existing sulfur cathodes of lithium−sulfur batteries need to be tackled. Herein, we synthesized a polycarbonsulfide active material with an atomically assembled π-conjugated 3D conductive matrix via the self-polymerization of carbon disulfide (CS 2 ) monomers. The as-synthesized polycarbonsulfide features oligo-S heterocycles assembled to conjugated conductive carbon chains. The coupled lithium-polycarbonsulfide battery delivered a high capacity of 724.5 mAh g −1 at 1.0 C (corresponding to 827.3 Wh kg −1 ) with an ultralow capacity decay rate of 0.032% per cycle, as well as high-rate capability of 499.6 mAh g −1 at 3.0 C. Multiple ex situ spectroscopic analyses revealed that the robust π-conjugated conductive polymeric matrix was well preserved during repeated battery operation, which efficiently tethered the discharge products to greatly restrict the shuttling effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.