Temperature governs the motion of molecules at the nanoscale and thus should play an essential role in determining the transport of water and ions through a nanochannel, which is still poorly understood. This work devotes to revealing the temperature effect on the coupling transport of water and ions through a carbon nanotube by molecular dynamics simulations. A fascinating finding is that the ion flux order changes from cation > anion to anion > cation with the increase in field strength, leading to the same direction change of water flux. The competition between ion hydration strength and mobility should be a partial reason for this ion flux order transition. High temperatures significantly promote the transport of water and ions, stabilize the water flux direction, and enhance the critical field strength. The ion translocation time exhibits an excellent Arrhenius relation with the temperature and a power law relation with the field strength, yielding to the Langevin dynamics. However, because of self-diffusion, the water translocation time displays different behaviors without following the ions. The high temperature also leads to an abnormal maximum behavior of the ion flux, deciphered by the massive increase in water flow that inversely hinders the ion flux, suggesting the coexistence of water–ion coupling transport and competition. Our results shed deep light on the temperature dependence of coupling transport of water and ions, answering a fundamental question on the water flux direction during the ionic transport, and thus should have great implications in the design of high flux nanofluidic devices.
BackgroundPlant roots are highly plastic to high salinity. However, the molecular mechanism by which root developmental plasticity is regulated remains largely unknown. Previously we reported that miR172c-NNC1 module plays a key role in soybean-rhizobial symbiosis. The fact that the miR172c promoter contains several stress-related cis elements indicates that miR172c may have a role in root response to abiotic stress.ResultsHere we showed that miR172c is greatly induced by salt stress in soybean. Overexpression of miR172c and knockdown of miR172c activity resulted in substantially increased and reduced root sensitivity to salt stress, respectively. Furthermore, we show that the target gene NNC1 (Nodule Number Control 1) of miR172c was downregulated by salt stress. The transgenic roots overexpressing or knocking down NNC1 expression also exhibited the altered root sensitivity to salt stress.ConclusionThe study reveals the crucial role of miR172c-NNC1 module in root stress tolerance to salt stress in soybean.Electronic supplementary materialThe online version of this article (10.1186/s12870-017-1161-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.