The energy dependence of the yields of single and double strand breaks (SSB and DSB) and crosslinks induced by electron impact on plasmid DNA films is measured in the 2-20 eV range. The yield functions exhibit two strong maxima, which are interpreted to result from the formation of core-excited resonances (i.e., transient anions) of the bases, and their decay into the autoionization channel, resulting in →* electronic transitions of the bases followed by electron transfer to the C-O * bond in the phosphate group. Occupancy of the* orbital ruptures the C-O bond of the backbone via dissociative electron attachment, producing a SSB. From a comparison of our results with those of other works, including theoretical calculations and electron-energy-loss spectra of the bases, the 4.6 eV peak in the SSB yield function is attributed to the resonance decay into the lowest electronically excited states of the bases; in particular, those resulting from the transitions 1A'( → *) and 1A″(n → *) of thymine and 1A'( → *) of cytosine. The strongest peak at 9.6 eV in the SSB yield function is also associated with electron captured by excited states of the bases, resulting mostly from a multitude of higher-energy → * transitions. The DSB yield function exhibits strong maxima at 6.1 and 9.6 eV. The peak at 9.6 eV is probably related to the same resonance manifold as that leading to SSB, but the other at 6.1 eV may be more restricted to decay into the electronic state 1A' ( → *) of cytosine via autoionization. The yield function of crosslinks is dominated by a broad peak extending over the 3.6-11.6 eV range with a sharper one at 17.6 eV. The different line shape of the latter function, compared to that of SSB and DSB, appears to be due to the formation of reactive radical sites in the initial supercoiled configuration of the plasmid, which react with the circular form (i.e., DNA with a SSB) to produce a crosslink.
X-ray photoelectron spectroscopy (XPS) is harnessed as an in situ efficient characterization technique for monitoring chemical bond transformation in DNA and cisplatin-DNA complexes under synergic X-ray irradiation. By analyzing the variation of relative peak area of core elements of DNA as a function of irradiation time, we find that the most vulnerable scission sites in DNA are those containing phosphate and glycosidic bonds. Compared to DNA, the effective rate constants of the corresponding phosphodiester and glycosidic bond cleavages for cisplatin-DNA complexes are 1.8 and 1.9 folds larger. These damages and their enhancements are similar to those induced by low energy electrons (LEE). Consistently, the magnitude of the secondary electron distribution produced by the X-rays on the cisplatin-DNA complexes is considerably increased compared to that of pristine DNA. The data suggest that DNA radiosensization by cisplatin results not only from the sensitization of DNA to the action of LEE, but also from an increase the production of LEE at the site of binding of the cisplatin. The results provide new insights into the mechanisms of cisplatin-induced sensitization of DNA under X-ray irradiation, which could be helpful in the design of new cisplatin-based antitumor drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.