Summary Fleshy fruits are classically divided into climacteric and nonclimacteric types. It has long been thought that the ripening of climacteric and nonclimacteric fruits is regulated by ethylene and abscisic acid (ABA), respectively. Here, we report that sucrose functions as a signal in the ripening of strawberry (Fragaria × ananassa), a nonclimacteric fruit. Pharmacological experiments, as well as gain‐ and loss‐of‐function studies, were performed to demonstrate the critical role of sucrose in the regulation of fruit ripening. Fruit growth and development were closely correlated with a change in sucrose content. Exogenous sucrose and its nonmetabolizable analog, turanose, induced ABA accumulation in fruit and accelerated dramatically fruit ripening. A set of sucrose transporters, FaSUT1–7, was identified and characterized, among which FaSUT1 was found to be a major component responsible for sucrose accumulation during fruit development. RNA interference‐induced silencing of FaSUT1 led to a decrease in both sucrose and ABA content, and arrested fruit ripening. By contrast, overexpression of FaSUT1 led to an increase in both sucrose and ABA content, and accelerated fruit ripening. In conclusion, this study demonstrates that sucrose is an important signal in the regulation of strawberry fruit ripening.
One-dimension noble nanomaterials have promising applications in many fields, and their growth pattern control is significant to property modulation. Herein, we report a facile strategy with which the growth pattern of Ag on the Au nanorod (NR) or decahedral nanoparticle (NP) surface can be precisely controlled and various structured Ag/Au NRs can be synthesized. Achievement of growth pattern control is mainly attributed to the adjustable reaction kinetics of Ag– to Ag0. Slow and moderate reaction rate favor asymmetrical growth, producing Au-tipped Ag NRs and asymmetrical Ag–Au–Ag NRs, respectively. In the case of a fast reaction rate, symmetrical growth dominates and symmetrical Ag–Au–Ag NRs form. Furthermore, the prepared bimetallic NRs can be used as starting materials to generate other novel nanostructures (nanocups, nanonails, and longer Au-tipped Ag NRs). The result presented here is vital to both exploration of growth theory and constructing nanostructures of not only the Au/Ag bimetallic system but also possibly other noble bimetallic systems. Moreover, these prepared nanostructures could provide model materials for studying the physical properties (such as structure-dependent surface plasmon) or have potential applications in the medical field. For example, hollow nanocups can serve as containers for controlled release of drug, etc.
MicroRNA-132 (miR‑132) has been reported to play a tumor suppressive role in different human malignancies. However, its role and underling mechanism in hepatocellular carcinoma (HCC) remains poorly defined due to lack of target gene information. In the present study, we demonstrated that the mean level of miR‑132 in hepatocellular carcinoma (HCC) tissues was significantly lower than that in matched tumor-adjacent tissues, and its expression negatively correlated with tumor differentiation (P<0.01), TNM stage (P<0.01) and lymph node metastasis (P<0.01). Similarly, the expression of miR‑132 was obviously reduced in HCC cell lines as compared with a normal hepatic cell line. Ectopic expression of miR‑132 inhibited cell proliferation, colony formation, migration and invasion, and induced apoptosis in HepG2 cells. In vivo studies showed that miR‑132 inhibited tumor growth of HCC and decreased tumor volume and weight. In addition, phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) was identified as a direct target of miR‑132 by a luciferase reporter assay. Western blot and qRT-PCR analysis indicated that PIK3R3 was significantly downregulated by miR‑132 in HCC cells. miR‑132 expression inversely correlated with PIK3R3 mRNA expression in clinical HCC tissues. Investigations into possible mechanisms revealed that miR‑132 inactivated the AKT/mTOR signaling pathway, which may contribute to inhibition of proliferation, migration, and invasion of HCC. These findings suggested that miR‑132 may serve as a potential target in the treatment of human HCC.
Multiple-soliton dynamic patterns have been observed experimentally in an erbium-doped fiber ring laser with graphene as a saturable absorber. Under relatively low pumping power we have obtained disordered multiple-solitons, bunched solitons and high order harmonic mode locking by adjusting the orientation of the polarization controllers. With increased pumping power, we have also observed flow of solitons. We have experimentally investigated in detail the conditions under which these patterns form.
Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate amount of AgNO3 facilitates the formation of Au nanorods. A large amount of AgNO3 completely blocks the growth of nanorods and favors the formation of high quality decahedra (decahedra can be considered as nanorods with 0 nm longitudinal length). Besides, this blocking effect also allows preparation of different high-index-faceted Au nanobipyramids. These prepared Au nanostructures further serve as starting templates to fabricate other heterostructured Au/Ag nanomaterials, such as Ag-Au-Ag segmental nanorods, Au@Ag core-shelled nanostructures. The prepared nanostructures exhibit size- and structure-dependent catalytic performance in the reduction of p-nitrophenol to p-aminophenol by sodium borohydride.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.