<p style='text-indent:20px;'>The aim of this paper is to study the multiplicity of solutions for the following Kirchhoff type elliptic systems</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{ll} -m\left(\mathop \sum \limits_{j = 1}^k \|u_j\|^2\right)\Delta u_i = \frac{f_i(x, u_1, \ldots, u_k)}{|x|^\beta}+\varepsilon h_i(x), \ \ & \mbox{in}\ \ \Omega, \ \ i = 1, \ldots, k , \\ u_1 = u_2 = \cdots = u_k = 0, \ \ & \mbox{on}\ \ \partial\Omega, \end{array} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded domain in <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^2 $\end{document}</tex-math></inline-formula> containing the origin with smooth boundary, <inline-formula><tex-math id="M3">\begin{document}$ \beta\in [0, 2) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ m $\end{document}</tex-math></inline-formula> is a Kirchhoff type function, <inline-formula><tex-math id="M5">\begin{document}$ \|u_j\|^2 = \int_\Omega|\nabla u_j|^2dx $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ f_i $\end{document}</tex-math></inline-formula> behaves like <inline-formula><tex-math id="M7">\begin{document}$ e^{\alpha_0 s^2} $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M8">\begin{document}$ |s|\rightarrow \infty $\end{document}</tex-math></inline-formula> for some <inline-formula><tex-math id="M9">\begin{document}$ \alpha_0>0 $\end{document}</tex-math></inline-formula>, and there is <inline-formula><tex-math id="M10">\begin{document}$ C^1 $\end{document}</tex-math></inline-formula> function <inline-formula><tex-math id="M11">\begin{document}$ F: \Omega\times\mathbb{R}^k\to \mathbb{R} $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M12">\begin{document}$ \left(\frac{\partial F}{\partial u_1}, \ldots, \frac{\partial F}{\partial u_k}\right) = \left(f_1, \ldots, f_k\right) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M13">\begin{document}$ h_i\in \left(\big(H^1_0(\Omega)\big)^*, \|\cdot\|_*\right) $\end{document}</tex-math></inline-formula>. We establish sufficient conditions for the multiplicity of solutions of the above system by using variational methods with a suitable singular Trudinger-Moser inequality when <inline-formula><tex-math id="M14">\begin{document}$ \varepsilon>0 $\end{document}</tex-math></inline-formula> is small.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.