Accumulating evidence indicates that eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) is involved in cancer, while the clinical significance and the exact role of eEF1A1 in renal cell carcinoma (RCC) remain obscure. The aim of the present study was to evaluate the clinical significance of eEF1A1 in RCC and to investigate its effective mechanisms in order to identify a potential therapeutic target. The expression levels of eEF1A1 in RCC were explored by immunohistochemistry in tissues from 184 patients. eEF1A1 was knocked down, and cell proliferation and apoptosis were then investigated. The MAPK pathway-related proteins were detected by western blot. Our results revealed that eEF1A1 was highly expressed in RCC tissues and associated with poor prognosis. Knockdown of eEF1A1 attenuated proliferation and promoted the apoptosis of RCC cells. Furthermore, eEF1A1 knockdown decreased the phosphorylation level of AKT and ERK. In conclusion, eEF1A1 may serve as a valuable prognostic biomarker and promising therapeutic target of RCC.
The Snail family transcriptional repressor 1 gene (Snail1) was screened in multiple myeloma cells (MMCs) from bortezomib-resistant MM patients and was found to be significantly associated with the development of drugresistance mechanisms. In the present study, we first confirmed that the protein expression of Snail1 in bortezomib-resistant MMCs was significantly higher than that in MMCs without bortezomib resistance. The mechanistic studies confirmed that the enhancement of Snail1 expression in bortezomib-resistant MMCs directly upregulated transcription of the intracellular MDR1 gene to immediately develop multiple drug resistance mechanisms and inhibited P53 protein expression through the Snail1/hsa-miRNA-22-3p/P53 pathway to inhibit tumor cell apoptosis. By upregulating MDR1 and downregulating P53, Snail1 induced the drug resistance of MMCs to bortezomib, while Snail1 gene silencing effectively improved the drug sensitivity of MMCs to bortezomib chemotherapy. The present study further elucidated the drug resistance mechanisms of MMCs and provides evidence for increased clinical efficacy of bortezomib in MM patients.
KIF2A has been shown to be involved in the regulation of AML pathology, however, the mechanistic role of KIF2A in AML has not been fully identified. The present study aimed to identify the underlying mechanism of KIF2A regulation of AML cell function and chemosensitivity. A total of 58 patients with AML and 30 healthy subjects were enrolled for clinical analysis. AML cells (KG-1 and Kasumi-1) were transfected with KIF2A or control small interfering (si)RNA. PI3K/AKT pathway activator (740 Y-P) and RhoA overexpression plasmid were added to rescue the effect of KIF2A siRNA. Cell proliferation, apoptosis, chemosensitivity to ADR and AraC, expression levels of mRNA/proteins associated with PI3K/AKT and RhoA/ROCK pathways were measured by Cell Counting Kit-8, flow cytometry, reverse transcription-quantitative PCR and western blotting. KIF2A was overexpressed, and correlated with higher levels of bone marrow blast, poor risk classification, lower treatment response and unfavorable survival profile in patients with AML. KIF2A siRNA inhibited proliferation but enhanced apoptosis and chemosensitivity to ADR and AraC in KG-1 and Kasumi-1 cells, which also inactivated PI3K/AKT and RhoA/ROCK pathways. Subsequent rescue experiments showed that 740 Y-P and RhoA overexpression plasmid promoted cell survival and decreased chemosensitivity, which reversed the effect of KIF2A siRNA in KG-1 and Kasumi-1 cells. KIF2A was correlated with worse clinical features and survival in patients with AML; its knockdown promoted apoptosis and chemosensitivity by inactivating PI3K/AKT and RhoA/ROCK signaling pathways in AML cells. These data suggested KIF2A may be a potential prognostic marker and treatment target for AML management.
BackgroundT-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) expresses on leukemic stem and progenitor populations of non-M3 acute myeloid leukemia (AML) as well as T lymphocytes. TIM-3 is thought to be involved in the self-renewal of leukemic stem cells and the immune escape of AML cells, however its correlation with AML prognosis is still controversial and worthy of further investigation.Methodswe simultaneously assessed TIM-3 expression levels of leukemic blasts and T lymphocytes in the bone marrow of de novo AML patients using flow cytometry. The correlations of TIM-3 expression between leukemic blasts and T lymphocytes and the correlations of TIM-3 expression with various patient parameters were analyzed. In addition, the Cancer Genome Atlas (TCGA) data of AML patients were acquired and analyzed to verify the results.ResultsTIM-3 expression of CD34+ leukemic blasts (R2 = 0.95, p<0.0001) and CD34+CD38- leukemic stem cells (R2 = 0.75, p<0.0001) were significantly and positively correlated with that of the whole population of leukemic blasts. In addition, TIM-3 expression level of leukemic blasts correlated significantly and positively with that of CD8+ (R2 = 0.44, p<0.0001) and CD4+ (R2 = 0.16, p=0.0181) lymphocytes, and higher TIM-3 expression of leukemic blasts was significantly associated with a greater proportion of peripheral CD8+ T lymphocytes (R2 = 0.24, p=0.0092), indicating that TIM-3 on leukemic blasts might alter adaptive immunity of AML patients. Regarding clinical data, the presence of core binding factor (CBF) translocations was significantly correlated with higher TIM-3 expression of leukemic blasts (CBF versus non-CBF, median 22.78% versus 1.28%, p=0.0012), while TIM-3 expression levels of leukemic blasts were not significantly associated with the remission status after induction chemotherapy (p=0.9799), overall survival (p=0.4201) or event-free survival (p=0.9873). Similar to our results, TCGA data showed that patients with CBF translocations had significantly higher mRNA expression level of HAVCR2 (the gene encoding TIM-3) (median, 9.81 versus 8.69, p<0.0001), and as all patients in the cohort were divided into two groups based on the median HAVCR2 expression level, 5-year overall survivals were not significantly different (low versus high, 24.95% versus 24.54%, p=0.6660).ConclusionTIM-3 expression level on AML blasts correlates with presence of CBF translocations rather than clinical outcomes.
Donor cell-derived leukemia (DCL) is a special type of relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Patients with DCL generally have a poor prognosis due to resistance to conventional chemotherapy. Here, we report a case of donor cell-derived acute lymphoblastic leukemia after umbilical cord blood transplantation. The patient didn’t respond to induction chemotherapy. She then received anti-CD19 CAR-T cell therapy and achieved MRD-negative complete remission (CR). However, MRD levels rose from negative to 0.05% at 5 months after CAR-T cell therapy. Higher MRD levels were significantly associated with an increased risk of leukemia recurrence. Afterward, preemptive interferon-α treatment was administrated to prevent disease recurrence. To date, the patient has maintained MRD-negative CR for 41 months. Our results suggested that anti-CD19 CAR-T cells followed by interferon-α therapy are effective in treating donor cell-derived acute lymphoblastic leukemia. This report provides a novel strategy for the treatment of DCL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.