Lattice structure and symmetry of two-dimensional (2D) layered materials are of key importance to their fundamental mechanical, thermal, electronic and optical properties. Raman spectroscopy, as a convenient and nondestructive tool, however has its limitations on identifying all symmetry allowing Raman modes and determining the corresponding crystal structure of 2D layered materials with high symmetry like graphene and MoS 2 . Due to lower structural symmetry and extraordinary weak interlayer coupling of ReS 2 , we successfully identified all 18 first-order Raman active modes for bulk and monolayer ReS 2 . Without van der Waals (vdW) correction, our local density approximation (LDA) calculations successfully reproduce all the Raman modes.Our calculations also suggest no surface reconstruction effect and the absence of low frequency rigid-layer Raman modes below 100 cm -1 . Combining with Raman and LDA thus provides a general approach for studying the vibrational and structural properties of 2D layered materials with lower symmetry.3
Photocatalytic hydrogen evolution from water has triggered an intensive search for metal-free semiconducting photocatalysts. However, traditional semiconducting materials suffer from limited hydrogen evolution efficiency owing to low intrinsic electron transfer, rapid recombination of photogenerated carriers, and lack of artificial microstructure. Herein, we report a metal-free half-metallic carbon nitride for highly efficient photocatalytic hydrogen evolution. The introduced half-metallic features not only effectively facilitate carrier transfer but also provide more active sites for hydrogen evolution reaction. The nanosheets incorporated into a micro grid mode resonance structure via in situ pyrolysis of ionic liquid, which show further enhanced photoelectronic coupling and entire solar energy exploitation, boosts the hydrogen evolution rate reach up to 1009 μmol g−1 h−1. Our findings propose a strategy for micro-structural regulations of half-metallic carbon nitride material, and meanwhile the fundamentals provide inspirations for the steering of electron transfer and solar energy absorption in electrocatalysis, photoelectrocatalysis, and photovoltaic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.