This paper presents a novel hydrostatic actuator, which is named as linear-driven electro-hydrostatic actuator (LEHA). In an LEHA, the actuator is driven by a novel collaborative rectification pump (CRP), which incorporates two miniature cylinders and two spool valves. Specifically, the CRP is driven by two linear oscillating motors, which are designed and optimized to generate reciprocating motion at high frequency with adequate stroke. CRP offers a highly novel linear fluid pump with flexibility in bi-directionally driving. In this paper, schematic of LEHA is first presented and its kinematic flow rate equation is derived. Then the design of CRP, linear oscillating motor, as well as the whole LEHA prototype is introduced. Performance of the LEHA is demonstrated through a series of experiments and simulation, and analysis of the results is also included.
Energetic macroscopic representation (EMR) is an effective graphical modeling tool for multiphysical systems, and EMR model clearly illustrates the power flow and interaction between different subcomponents. This paper presents the modeling and control of a novel linear-driven electro-hydrostatic actuator (LEHA) with EMR method. The LEHA is a novel electro-hydrostatic actuation system, and the hydraulic cylinder in LEHA is driven by a novel collaborative rectification pump (CRP), which incorporates two miniature cylinders and two spool valves. EMR model clearly illustrated the powertrain in LEHA and interaction between each components. Based on EMR model, a maximum control structure (MCS) is easily deduced using the action and reaction principle, and then the practicable controller deduced from MCS shows satisfying performance in the simulation.
Although linear motor has vital and potential applications in air compressors, hydraulic pumps, earphones and electric vehicles because of its good reliability, high power density and convenient maintenance, most researchers rarely concentrate on the dynamic performance of the linear oscillating motor with external force loads. It is essential to study the dynamic performance of the linear oscillating motor with accurate and multi-mode force loads. In this paper, a novel linear oscillating loading system is proposed and the loading system structure is depicted. Then, a mathematical model is built to match the simulation analyses of the dynamic performance of the linear oscillating motor with multi-mode external force loads. Moreover, the linear oscillating loading system platform is built and experiments are undertaken to verify the simulation analyses about the dynamic performance and efficiency with respect to different external force loads, and the simulation and experimental results show good agreement and will have promising significance for linear oscillating motor research and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.