Background: Segmental duplication (SD) regions are distinct targets for aneuploidy detection owing to the virtual elimination of amplification bias. The difficulty of searching SD sequences for assay design has hampered their applications. Methods: We developed a computational program, ChAPDes, which integrates SD searching, refinement, and design of specific PCR primer/probe sets in a pipeline to remove most of the manual work. The generated primer/probe sets were first tested in a multiplex multicolour melting curve analysis for the detection of five common aneuploidies. The primer/probe sets were then tested in a digital PCR assay for the detection of trisomy 21. Finally, a digital PCR protocol was established to quantify maternal plasma DNA sequences for the non-invasive prenatal detection of fetal trisomy 21. Findings: ChAPDes could output 21,772 candidate primer/probe sets for trisomy 13, 18, 21 and sex chromosome aneuploidies within 2 working days. Clinical evaluation of the multiplex multicolour melting curve analysis involving 463 fetal genomic DNA samples revealed a sensitivity of 100% and specificity of 99.64% in comparison with the reference methods. Using the established digital PCR protocol, we correctly identified two trisomy 21 fetuses and thirteen euploid foetuses from the maternal plasma samples. Interpretation: The combination of ChAPDes with digital PCR detection could facilitate the use of SD as potential biomarkers for the non-invasive prenatal testing of fetal chromosomal aneuploidies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.