The effects of berberine on cardiac function of heart failure after myocardial infarction and its possible mechanism were investigated. The anterior descending branches of 50 female Wistar rats were ligatured to establish the model of heart failure after myocardial infarction. At 4 weeks after successful modeling, the rats were randomly divided into two groups receiving 4-week gavage with saline (Sal group) and berberine (Ber group), while the sham-operation group (Sham group) was set up. After 4 weeks, the hemodynamics and serum BNP in rats were measured. The hearts of rats were taken to detect the degree of myocardial fibrosis. The myocardial cell apoptosis was detected. The expressions and changes in myocardial apoptosis-related proteins, including Bcl-2, Bax and caspase-3, were detected. The expression and changes in GRP78, CHOP and caspase-12 in myocardial tissue were detected. The results showed that Berberine improved the cardiac function of rats after myocardial infarction. After myocardial infarction, myocardial fibrosis and apoptosis were observed around the infarction area, berberine improved the myocardial fibrosis and reduced cell apoptosis. Furthermore, berberine alleviated endoplasmic reticulum stress (ERS) after myocardial infarction. In conclusion, Berberine can inhibit the myocardium cell apoptosis of heart failure after myocardial infarction, and its mechanism may be realized by affecting the ERS in myocardial tissue of heart failure after myocardial infarction and CHOP and caspase-12 apoptotic signaling pathway, upregulating Bcl-2/Bax expression and downregulating caspase-3 expression, thus inhibiting the cardiac remodeling and protecting the cardiac function.
Objectives: To examine retrospectively the relationship between acute kidney injury (AKI) and acute myocardial infarction (AMI), and the association between estimated glomerular filtration rate (eGFR) at admission and AKI outcome. Methods: AKI was defined as an increase in serum creatinine (SCr) by !0.3 mg/dl within 48 h or an increase in SCr to !1.5 times baseline within the first 7 days of hospitalization. Patients with AMI were divided into subgroups according to their eGFR at admission and the development of AKI. Results: This study enrolled 396 patients with AMI; 48 (12.1%) developed AKI. In-hospital mortality was 39.6% (19/48) for patients with AKI compared with 7.5% (26/348) in those without AKI (odds ratio [OR] 8.11; 95% confidence interval [CI] 4.02, 16.39). The mortality rate was 35.7% (five of 14) in the eGFR ! 60 ml/min/1.73m 2 with AKI group (OR 6.21, 95% CI 1.50, 25.69) and 41.2% (14/34) in the eGFR < 60 ml/min/1.73m 2 with AKI group (OR 12.62, 95% CI 5.54, 28.74). Conclusions: AKI development was common and associated with mortality in AMI patients with either preserved or impaired eGFR levels.
With the rapid innovation of nanoscience and technology, nanomaterials have also been deeply applied in the medical and health industry and become one of the innovative methods to treat many diseases. In recent years, bioactive nanomaterials have attracted extensive attention and have made some progress in the treatment of some major chronic diseases, such as nervous system diseases and various malignant tumors. Bioactive nanomaterials depend on their physical and chemical properties (crystal structure, surface charge, surface functional groups, morphology, and size, etc.) and direct produce biological activity and play to the role of the treatment of diseases, compared with the traditional nanometer pharmaceutical preparations, biological active nano materials don’t exert effects through drug release, way more directly, also is expected to be more effective for the treatment of diseases. However, further studies are needed in the evaluation of biological effects, fate in vivo, structure-activity relationship and clinical transformation of bionanomaterials. Based on the latest research reports, this paper reviews the application of bioactive nanomaterials in the diagnosis and treatment of major chronic diseases and analyzes the technical challenges and key scientific issues faced by bioactive nanomaterials in the diagnosis and treatment of diseases, to provide suggestions for the future development of this field.
Clear cell renal cell carcinoma (ccRCC) is the most common kind of kidney cancer with poor prognosis. Necroptosis is a newly observed type of programmed cell death in recent years. However, the effects of necroptosis-related lncRNAs (NRlncRNAs) on ccRCC have not been widely explored. The transcription profile and clinical information were obtained from The Cancer Genome Atlas. Necroptosis-related lncRNAs were identified by utilizing a co-expression network of necroptosis-related genes and lncRNAs. Univariate Cox regression, least absolute shrinkage, and selection operator regression and multivariate Cox regression were performed to screen out ideal prognostic necroptosis-related lncRNAss and develop a multi-lncRNA signature. Finally, 6 necroptosis-related lncRNA markers were established. Patients were separated into high- and low-risk groups based on the performance value of the median risk score. Kaplan–Meier analysis identified that high-risk patients had poorer prognosis than low-risk patients. Furthermore, the area under time-dependent receiver operating characteristic curve reached 0.743 at 1 year, 0.719 at 3 years, and 0.742 at 5 years, which indicating that they can be used to predict ccRCC prognosis. In addition, the proposed signature was related to immunocyte infiltration. A nomogram model was also established to provide a more beneficial prognostic indicator for the clinic. Altogether, in the present study, the 6-lncRNA prognostic risk signature are trustworthy and effective indicators for predicting the prognosis of ccRCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.