The mitochondrial genome of Epeorus herklotsi (Ephemeroptera: Heptageniidae) is a circular molecule of 15,801 bp in length with a base composition of 32.7% A, 32.9% T, 21.5% C, 13.0% G, including extra tRNA Met gene. The IMQM tRNA cluster is found in E. herklotsi as well as Parafornuru youi and two species of Epeorus (KM244708, KJ493406), while the typical IQM tRNA cluster is found in Paegniodes cupulatus. In BI and ML phylogenetic trees, the monophyly of the families Heptageniidae, Baetidae, and Ephemerellidae are highly supported. E. herklotsi is a sister clade to Epeorus sp2. (KJ493406).
To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.
The owlflies (Family Ascalaphidae) belong to the Neuroptera but are often mistaken as dragonflies because of morphological characters. To date, only three mitochondrial genomes of Ascalaphidae, namely Libelloides macaronius; Ascaloptynx appendiculatus; Ascalohybris subjacens, are published in GenBank, meaning that they are greatly under-represented in comparison with the 430 described species reported in this family. In this study, we sequenced and described the complete mitochondrial genome of Suhpalacsa longialata (Neuroptera, Ascalaphidae). The total length of the S. longialata mitogenome was 15,911 bp, which is the longest known to date among the available family members of Ascalaphidae. However, the size of each gene was similar to the other three Ascalaphidae species. The S. longialata mitogenome included a transposition of tRNACys and tRNATrp genes and formed an unusual gene arrangement tRNACys-tRNATrp-tRNATyr (CWY). It is likely that the transposition occurred by a duplication of both genes followed by random loss of partial duplicated genes. The nucleotide composition of the S. longialata mitogenome was as follows: A = 41.0%, T = 33.8%, C = 15.5%, G = 9.7%. Both Bayesian inference and ML analyses strongly supported S. longialata as a sister clade to (Ascalohybris subjacens + L. macaronius), and indicated that Ascalaphidae is not monophyletic.
Hierarchical patterns are widely found on the biological skins in nature and can provide unique functions to surfaces such as wettability, optical, and adhesive properties. Herein, a facile and robust strategy to generate the self-wrinkling pattern on the surface of the photo-curing coating is proposed, which comprises a crosslinking monomer, photoinitiator, and fluorinated copolymer as additive. The fluorinated copolymer, which contains fluorocarbon chains possessing low surface-energy, tertiary amine as coinitiator, and anthracene in the side chain, can self-assemble to the top layer for constructing the gradient photo-crosslinking system. Upon the irradiation of ultraviolet (UV) light, the mismatch of shrinkage caused by the gradient photo-crosslinking leads to the formation of wrinkles, the morphology of which can be regulated by monomer proportion, the content of fluorinated copolymer, and the thickness of the film. Taking the spatiotemporal advantages of light, the hierarchical patterns of wrinkle are generated by programmed exposure with photomask, which has potential applications in anti-counterfeiting and encapsulation of light-emitting diode (LED) chip for displaying. This strategy provides a rapid and universal alternative method to fabricate a hierarchical pattern of the surface.
Background The phylogenetic relationships of Odonata (dragonflies and damselflies) and Ephemeroptera (mayflies) remain unresolved. Different researchers have supported one of three hypotheses (Palaeoptera, Chiastomyaria or Metapterygota) based on data from different morphological characters and molecular markers, sometimes even re-assessing the same transcriptomes or mitochondrial genomes. The appropriate choice of outgroups and more taxon sampling is thought to eliminate artificial phylogenetic relationships and obtain an accurate phylogeny. Hence, in the current study, we sequenced 28 mt genomes from Ephemeroptera, Odonata and Plecoptera to further investigate phylogenetic relationships, the probability of each of the three hypotheses, and to examine mt gene arrangements in these species. We selected three different combinations of outgroups to analyze how outgroup choice affected the phylogenetic relationships of Odonata and Ephemeroptera. Methods Mitochondrial genomes from 28 species of mayflies, dragonflies, damselflies and stoneflies were sequenced. We used Bayesian inference (BI) and Maximum likelihood (ML) analyses for each dataset to reconstruct an accurate phylogeny of these winged insect orders. The effect of outgroup choice was assessed by separate analyses using three outgroups combinations: (a) four bristletails and three silverfish as outgroups, (b) five bristletails and three silverfish as outgroups, or (c) five diplurans as outgroups. Results Among these sequenced mitogenomes we found the gene arrangement IMQM in Heptageniidae (Ephemeroptera), and an inverted and translocated tRNA-Ile between the 12S RNA gene and the control region in Ephemerellidae (Ephemeroptera). The IMQM gene arrangement in Heptageniidae (Ephemeroptera) can be explained via the tandem-duplication and random loss model, and the transposition and inversion of tRNA-Ile genes in Ephemerellidae can be explained through the recombination and tandem duplication-random loss (TDRL) model. Our phylogenetic analysis strongly supported the Chiastomyaria hypothesis in three different outgroup combinations in BI analyses. The results also show that suitable outgroups are very important to determining phylogenetic relationships in the rapid evolution of insects especially among Ephemeroptera and Odonata. The mt genome is a suitable marker to investigate the phylogeny of inter-order and inter-family relationships of insects but outgroup choice is very important for deriving these relationships among winged insects. Hence, we must carefully choose the correct outgroup in order to discuss the relationships of Ephemeroptera and Odonata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.