Widespread applications of membrane technology call for the development of antibiofouling membranes. For the traditional contact-killing strategy, the antibacterial action is restricted to the surface: the membrane loses its antibiofouling efficacy once its surface is completely covered with a fouling layer. However, in this study, polyvinylidene fluoride (PVDF) microfiltration membranes blended with quaternary ammonium compound (QAC) exhibited a surprisingly lasting antimicrobial activity in the vicinity of the membrane surface. The results indicated that QAC was capable of driving surface segregation with a high structural stability, and the QAC modified membrane shows clear antibacterial effects against both Gram-positive and Gram-negative bacteria. Covering the modified membrane surface by an abiotic alginate layer resulted in a loss of antibacterial efficiency by 86.2%. In contrast, the antibacterial efficiency was maintained after developing a biofilm of Staphylococcus aureus of 30 μm in thickness. The current study may suggest that bacteria affected by contact-killing might interact with other bacteria in the vicinity, resulting in retarded biofilm growth. The antibiofouling effect and associated mechanism of the QAC modified membrane were further validated in a membrane bioreactor during long-term operation.
Extracellular polymeric substances (EPS) are key foulants in membrane bioreactors (MBRs). However, their positive functions of protecting microorganisms from environmental stresses, e.g., during in situ hypochlorite chemical cleaning of membranes, have not been adequately elucidated. In this work, we investigated the response of microorganisms in an MBR to various dosages of NaOCl, with a particular emphasis on the mechanistic roles of EPS. Results showed that functional groups in EPS such as the hydroxyl and amino groups were attacked by NaOCl, causing the oxidation of polysaccharides, denaturation of amino acids, damage to protein secondary structure, and transformation of tryptophan protein-like substances to condensed aromatic ring substances. The presence of EPS alleviated the negative impacts on catalase and superoxide dismutase, which in turn reduced the concentration of reactive oxygen species (ROS) in microbial cells. The direct extracellular reaction and the mitigated intracellular oxidative responses facilitated the maintenance of microbial metabolism, as indicated by the quantity of adenosine triphosphate and the activity of dehydrogenase. The reaction with NaOCl also led to the changes of cell integrity and adhesion properties of EPS, which promoted the release of organic matter into bulk solution. Our results systematically demonstrate the protective roles of EPS and the underlying mechanisms in resisting the environmental stress caused by NaOCl, which provides important implications for in situ chemical cleaning in MBRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.