SUMMARYThe simplicity is a type of measurement that represents visual simplicity of a signal, regardless of its amplitude and frequency variation. We propose an algorithm that can detect major components of heart sound using Gaussian regression to the smoothed simplicity profile of a heart sound signal. The weight and spread of the Gaussians are used as features to discriminate cardiac murmurs from major components of a heart sound signal. Experimental results show that the proposed method is very promising for robust and accurate detection of major heart sound components as well as cardiac murmurs.
In frequency domain ICA, the frequency bin permutation problem falls off the quality of separated signals. In this paper, we propose a new algorithm to solve the frequency bin permutation problem using the covariance of power ratio of separated signals in multi-channel FD-ICA. It makes use of the continuity of the spectrum of speech signals to check if frequency bin permutation occurs in the separated signal using the power ratio of adjacent frequency bins. Experimental results have shown that the proposed method could fix the frequency bin permutation problem in the multi-channel FD-ICA.
Speech enhancement aims to improve speech quality by removing background noise from noisy speech. Independent vector analysis is a type of frequency-domain independent component analysis method that is known to be free from the frequency bin permutation problem in the process of blind source separation from multi-channel inputs. This paper proposed a new method of microphone array based speech enhancement that combines independent vector analysis and beamforming techniques. Independent vector analysis is used to separate speech and noise components from multi-channel noisy speech, and delay-sum beamforming is used to determine the enhanced speech among the separated signals. To verify the effectiveness of the proposed method, experiments for computer simulated multi-channel noisy speech with various signal-to-noise ratios were carried out, and both PESQ and output signal-to-noise ratio were obtained as objective speech quality measures. Experimental results have shown that the proposed method is superior to the conventional microphone array based noise removal approach like GSC beamforming in the speech enhancement.
For blind source separation of convolutive mixtures, FDICA(Frequency Domain Independent Component Analysis) algorithms are generally used. Since FDICA algorithm such as Sawada FDICA, IVA(Independent Vector Analysis) works on the frequency bin basis with a natural gradient descent method, it takes much time to converge. In this paper, we propose a new method to improve convergence speed in FDICA algorithm. The proposed method reduces the number of iteration drastically in the process of natural gradient descent method by applying a weighted inner product constraint of unmixing matrix. Experimental results have shown that the proposed method achieved large improvement of convergence speed without degrading the separation performance of the baseline algorithms.
To diagnose the cardiac valve abnormalities using analysis of phonocardiogram, first of all, accurate detection of S1, S2 components is needed for heart sound segmentation. In this paper, a new method that uses the third moment characteristics of an envelope of the PCG is proposed for accurate detection of S1 and S2 components of the heart sound with cardiac murmurs. The envelope of the PCG is obtained from the short-time energy profile, and its third moment profile with slope information is used for accurate time gating of the S1, S2 components. Experimental results have shown that the proposed method is superior to the conventional second moment method for detection of S1 and S2 regions from the heart sound signals with cardiac murmurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.