With the development of intelligent agents pursuing humanisation, artificial intelligence must consider emotion, the most basic spiritual need in human interaction. Traditional emotional dialogue systems usually use an external emotional dictionary to select appropriate emotional words to add to the response or concatenate emotional tags and semantic features in the decoding step to generate appropriate responses. However, selecting emotional words from a fixed emotional dictionary may result in loss of the diversity and consistency of the response. We propose a semantic and emotion-based dual latent variable generation model (Dual-LVG) for dialogue systems, which is able to generate appropriate emotional responses without an emotional dictionary. Different from previous work, the conditional variational autoencoder (CVAE) adopts the standard transformer structure. Then, Dual-LVG regularises the CVAE latent space by introducing a dual latent space of semantics and emotion. The content diversity and emotional accuracy of the generated responses are improved by learning emotion and semantic features respectively. Moreover, the average attention mechanism is adopted to better extract semantic features at the sequence level, and the semi-supervised attention mechanism is used in the decoding step to strengthen the fusion of emotional features of the model. Experimental results show that Dual-LVG can successfully achieve the effect of generating different content by controlling emotional factors.
Polar code has the characteristics of simple coding and high reliability, and it has been used as the control channel coding scheme of 5G wireless communication. However, its decoding algorithm always encounters problems of large decoding delay and high iteration complexity when dealing with channel noise. To address the above challenges, this paper proposes a channel noise optimized decoding scheme based on a convolutional neural network (CNN). Firstly, a CNN is adopted to extract and train the colored channel noise to get more accurate estimation noise, and then, the belief propagation (BP) decoding algorithm is used to decode the polar codes based on the output of the CNN. To analyze and verify the performance of the proposed channel noise optimized decoding scheme, we simulate the decoding of polar codes with different correlation coefficients, different loss function parameters, and different code lengths. The experimental results show that the CNN-BP concatenated decoding can better suppress the colored channel noise and significantly improve the decoding gain compared with the traditional BP decoding algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.