Abstract-The research on the efforts of combining human and machine intelligence has a long history. With the development of mobile sensing and mobile Internet techniques, a new sensing paradigm called Mobile Crowd Sensing (MCS), which leverages the power of citizens for large-scale sensing has become popular in recent years. As an evolution of participatory sensing, MCS has two unique features: (1) it involves both implicit and explicit participation; (2) MCS collects data from two user-participant data sources: mobile social networks and mobile sensing. This paper presents the literary history of MCS and its unique issues. A reference framework for MCS systems is also proposed. We further clarify the potential fusion of human and machine intelligence in MCS. Finally, we discuss the future research trends as well as our efforts to MCS.
Since today's television can receive more and more programs, and televisions are often viewed by groups of people, such as a family or a student dormitory, this paper proposes a TV program recommendation strategy for multiple viewers based on user profile merging. This paper first introduces three alternative strategies to achieve program recommendation for multiple television viewers, discusses, and analyzes their advantages and disadvantages respectively, and then chooses the strategy based on user profile merging as our solution. The selected strategy first merges all user profiles to construct a common user profile, and then uses a recommendation approach to generate a common program recommendation list for the group according to the merged user profile. This paper then describes in detail the user profile merging scheme, the key technology of the strategy, which is based on total distance minimization. The evaluation results proved that the merging result can appropriately reflect the preferences of the majority of members within the group, and the proposed recommendation strategy is effective for multiple viewers watching TV together.
With the surging of smartphone sensing, wireless networking, and mobile social networking techniques, Mobile Crowd Sensing and Computing (MCSC) has become a promising paradigm for cross-space and largescale sensing. MCSC extends the vision of participatory sensing by leveraging both participatory sensory data from mobile devices (offline) and user-contributed data from mobile social networking services (online). Further, it explores the complementary roles and presents the fusion/collaboration of machine and human intelligence in the crowd sensing and computing processes. This article characterizes the unique features and novel application areas of MCSC and proposes a reference framework for building human-in-the-loop MCSC systems. We further clarify the complementary nature of human and machine intelligence and envision the potential of deep-fused human-machine systems. We conclude by discussing the limitations, open issues, and research opportunities of MCSC. . 2015. Mobile crowd sensing and computing: The review of an emerging human-powered sensing paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.