The rapid, accurate, and economical estimation of crop above-ground biomass at the farm scale is crucial for precision agricultural management. The unmanned aerial vehicle (UAV) remote-sensing system has a great application potential with the ability to obtain remote-sensing imagery with high temporal-spatial resolution. To verify the application potential of consumer-grade UAV RGB imagery in estimating maize above-ground biomass, vegetation indices and plant height derived from UAV RGB imagery were adopted. To obtain a more accurate observation, plant height was directly derived from UAV RGB point clouds. To search the optimal estimation method, the estimation performances of the models based on vegetation indices alone, based on plant height alone, and based on both vegetation indices and plant height were compared. The results showed that plant height directly derived from UAV RGB point clouds had a high correlation with ground-truth data with an R2 value of 0.90 and an RMSE value of 0.12 m. The above-ground biomass exponential regression models based on plant height alone had higher correlations for both fresh and dry above-ground biomass with R2 values of 0.77 and 0.76, respectively, compared to the linear regression model (both R2 values were 0.59). The vegetation indices derived from UAV RGB imagery had great potential to estimate maize above-ground biomass with R2 values ranging from 0.63 to 0.73. When estimating the above-ground biomass of maize by using multivariable linear regression based on vegetation indices, a higher correlation was obtained with an R2 value of 0.82. There was no significant improvement of the estimation performance when plant height derived from UAV RGB imagery was added into the multivariable linear regression model based on vegetation indices. When estimating crop above-ground biomass based on UAV RGB remote-sensing system alone, looking for optimized vegetation indices and establishing estimation models with high performance based on advanced algorithms (e.g., machine learning technology) may be a better way.
To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this study, the canopy temperature (Tc) of maize at the late vegetative stage was extracted from high-resolution red–green–blue (RGB, 1.25 cm) and thermal (7.8 cm) images taken by an unmanned aerial vehicle (UAV). To reduce the number of parameters for crop water stress monitoring, four simple methods that require only Tc were identified: Tc, degrees above non-stress, standard deviation of Tc, and variation coefficient of Tc. The ground-truth temperatures obtained using a handheld infrared thermometer were used to calibrate the temperature obtained from the UAV thermal images and to evaluate the Tc extraction results. Measured leaf stomatal conductance values were used to evaluate the performance of the four Tc-based crop water stress indicators. The results showed a strong correlation between ground-truth Tc and Tc extracted by the red–green ratio index (RGRI)-Otsu method proposed in this study, with a coefficient of determination of 0.94 (n = 15) and root mean square error value of 0.7°C. The RGRI-Otsu method was most accurate for estimating temperatures around 32.9°C, but the magnitude of residuals increased above and below this value. This phenomenon may be attributable to changes in canopy cover (leaf curling) under water stress, resulting in changes in the proportion of exposed sunlit soil in UAV thermal orthophotographs. Therefore, to improve the accuracy of maize canopy detection and extraction, optimal methods and better strategies for eliminating mixed pixels are needed. This study demonstrates the potential of using high-resolution UAV RGB images to supplement UAV thermal images for the accurate extraction of maize Tc.
In this study, we develop a method to estimate corn yield based on remote sensing data and ground monitoring data under different water treatments. Spatially explicit information on crop yields is essential for farmers and agricultural agencies to make well-informed decisions. One approach to estimate crop yield with remote sensing is data assimilation, which integrates sequential observations of canopy development from remote sensing into model simulations of crop growth processes. We found that leaf area index (LAI) inversion based on unmanned aerial vehicle (UAV) vegetation index has a high accuracy, with R2 and root mean square error (RMSE) values of 0.877 and 0.609, respectively. Maize yield estimation based on UAV remote sensing data and simple algorithm for yield (SAFY) crop model data assimilation has different yield estimation accuracy under different water treatments. This method can be used to estimate corn yield, where R2 is 0.855 and RMSE is 692.8kg/ha. Generally, the higher the water stress, the lower the estimation accuracy. Furthermore, we perform the yield estimate mapping at 2 m spatial resolution, which has a higher spatial resolution and accuracy than satellite remote sensing. The great potential of incorporating UAV observations with crop data to monitor crop yield, and improve agricultural management is therefore indicated.
An unmanned aerial vehicle (UAV) particulate-matter (PM) monitoring system was developed that can perform three-dimensional stereoscopic observation of PM2.5 and PM10 in the atmosphere. The UAV monitoring system was mainly integrated by modules of data acquisition and processing, wireless data transmission, and global positioning system (GPS). Particularly, in this study, a ground measurement-control subsystem was added that can display and store collected data in real time and set up measurement scenarios, data-storage modes, and system sampling frequency as needed. The UAV PM monitoring system was calibrated via comparison with a national air-quality monitoring station; the data of both systems were highly correlated. Since rotation of the UAV propeller affects measured PM concentration, this study specifically tested this effect by setting up another identical monitoring system fixed at a tower as reference. The UAV systems worked simultaneously to collect data for comparison. A correction method for the propeller disturbance was proposed. Averaged relative errors for the PM2.5 and PM10 concentrations measured by the two systems were 6.2% and 6.6%, respectively, implying that the UAV system could be used for monitoring PM in an atmosphere environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.