Antibiotics are used to control certain bacterial diseases in plant agriculture. Understanding antibiotic uptake by edible vegetables after application and associated risks on plant microbiome and human health is critical. In this study, oxytetracycline and streptomycin, the two most commonly used antibiotics in plant agriculture, were applied to cherry radish via continuous soil drenching to study their translocations into plant tissues, influence on radish microbiome, and the potential health risk to mice. The results demonstrated that oxytetracycline induced hormesis in radish plants and both antibiotics were translocated into the leaves, fruits, and roots of radishes from the soil, with significantly higher plant uptake of streptomycin than oxytetracycline. Interestingly, the proportion of culturable oxytetracycline or streptomycin-resistant bacteria in the antibiotic-accumulated radish tissues was significantly higher than that in the antibiotic-free radish tissues, although both bacterial and fungal communities in different radish tissues were not affected by the accumulated antibiotics, demonstrating that antibiotic application could enrich antibiotic resistance in the plant microbiome. Feeding mice with antibiotics-accumulated radish tissues did not show significant effects on the weight and blood glucose levels of mice. Overall, this study provides important insights into the risk of using antibiotics in plant agriculture.
Antibiotic resistance is a major global health crisis facing humanity, with horizontal gene transfer (HGT) as a principal dissemination mechanism in the natural and clinical environments. Perfluoroalkyl substances (PFASs) are emerging contaminants of global concern due to their high persistence in the environment and adverse effects on humans. However, it is unknown whether PFASs affect the HGT of bacterial antibiotic resistance. Using a genetically engineered Escherichia coli MG1655 as the donor of plasmid-encoded antibiotic resistance genes (ARGs), E. coli J53 and soil bacterial community as two different recipients, this study demonstrated that the conjugation frequency of ARGs between two E. coli strains was (1.45 ± 0.17) × 10 −5 and perfluorooctane sulfonate (PFOS) at environmentally relevant concentrations (2–50 μg L −1 ) increased conjugation transfer between E. coli strains by up to 3.25-fold. Increases in reactive oxygen species production, cell membrane permeability, biofilm formation capacity, and cell contact in two E. coli strains were proposed as major promotion mechanisms from PFOS exposure. Weighted gene co-expression network analysis of transcriptome data identified a series of candidate genes whose expression changes could contribute to the increase in conjugation transfer induced by PFOS. Furthermore, PFOS also generally increased the ARG transfer into the studied soil bacterial community, although the uptake ability of different community members of the plasmid either increased or decreased upon PFOS exposure depending on specific bacterial taxa. Overall, this study reveals an unrecognized risk of PFOS in accelerating the dissemination of antibiotic resistance. IMPORTANCE Perfluoroalkyl substances (PFASs) are emerging contaminants of global concern due to their high persistence in the environment and adverse health effects. Although the influence of environmental pollutants on the spread of antibiotic resistance, one of the biggest threats to global health, has attracted increasing attention in recent years, it is unknown whether environmental residues of PFASs affect the dissemination of bacterial antibiotic resistance. Considering PFASs, often called “forever” compounds, have significantly higher environmental persistence than most emerging organic contaminants, exploring the effect of PFASs on the spread of antibiotic resistance is more environmentally relevant and has essential ecological and health significance. By systematically examining the influence of perfluorooctane sulfonate on the antibiotic resistance gene conjugative transfer, not only at the single-strain level but also at the community level, this study has uncovered an unrecognized risk of PFASs in promoting conjugative transfers of bacterial antibiotic resistance genes, which could be incorporated into the risk assessment framework of PFASs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.