A new mixed lanthanide metal-organic framework thermometer Tb0.9Eu0.1PIA with the significantly high sensitivity of 3.53% per K has been realized by making use of an organic ligand, 5-(pyridin-4-yl)isophthalate, with higher triplet state energy.
A microporous MOF [Zn(4)(OH)(2)(1,2,4-BTC)(2)] (1,2,4-BTC = Benzene-1,2,4-tricarboxylate) with two immobilized open metal Zn(2+) sites was obtained by solvothermal reaction, which exhibits highly selective guest sorption and sensing of nitrobenzene.
A new microporous metal-organic framework, Cu2(PDDI) (ZJU-5; H4PDDI = 5,5'-(pyridine-2,5-diyl)diisophthalic acid), was solvothermally synthesized and structurally characterized. With open metal sites, Lewis basic pyridyl sites and suitable pore space, the acetylene uptake in ZJU-5a reaches the highest value of 290 cm(3) g(-1) at 273 K and 1 bar. Furthermore, ZJU-5a exhibits high absolute methane storage of 190 cm(3) (STP) cm(-3) at 35 bar and 224 cm(3) (STP) cm(-3) at 60 bar at room temperature.
A nanoscale MOF material NMOF 1 with controllable morphologies is realized whose morphology control has been simulated based on the BFDH method. The targeted NMOF 1 exhibits highly sensitive, selective and instant "turn-on" sensing of bacterial endospores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.