Background ALKBH5 regulated the malignant behavior of breast cancer and glioblastoma. However, the expression and function of ALKBH5 in epithelial ovarian cancer have not yet been determined. In the present study, we investigated the expression and function of ALKBH5 in epithelial ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as an early diagnostic marker. Methods Immunohistochemistry and western blot were used to detect protein expression. Gene silencing and over-expression experiment were used to study gene function. Cell proliferation assay and Matrigel invasion assays were used to detect cell proliferation and invasion, respectively. The nude mouse tumor formation experiment was used to evaluate the growth of cells in vivo. Results The expression of ALKBH5 was found to be increased in epithelial ovarian cancer tissue as compared to the normal ovarian tissues. The silencing of ALKBH5 in SKOV3 cells enhanced the autophagy and inhibited the proliferation and invasion in vitro and in vivo, whereas the ectopic expression of ALKBH5 in A2780 cells exerted an opposite effect. Mechanical study revealed that ALKBH5 physically interacted with HuR. ALKBH5 activated EGFR-PIK3CA-AKT-mTOR signaling pathway. Also, ALKBH5 enhanced the stability of BCL-2 mRNA and promoted the interaction between Bcl-2 and Beclin1. Conclusion Overall, the present study identified ALKBH5 as a candidate oncogene in epithelial ovarian cancer and a potential target for ovarian cancer therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1159-2) contains supplementary material, which is available to authorized users.
Sepsis is an excessive inflammatory condition with a high mortality rate and limited prediction and therapeutic options. In this study, for the first time, to our knowledge, we found that downregulation and/or blockade of T cell Ig and mucin domain protein 3 (Tim-3), a negative immune regulator, correlated with severity of sepsis, suggesting that Tim-3 plays important roles in maintaining the homeostasis of sepsis in both humans and a mouse model. Blockade and/or downregulation of Tim-3 led to increased macrophage activation, which contributed to the systemic inflammatory response in sepsis, whereas Tim-3 overexpression in macrophages significantly suppressed TLR-mediated proinflammatory cytokine production, indicating that Tim-3 is a negative regulator of TLR-mediated immune responses. Cross-talk between the Tim-3 and TLR4 pathways makes TLR4 an important contributor to Tim-3–mediated negative regulation of the innate immune response. Tim-3 signaling inhibited LPS–TLR4–mediated NF-κB activation by increasing PI3K–AKT phosphorylation and A20 activity. This negative regulatory role of Tim-3 reflects a new adaptive compensatory and protective mechanism in sepsis victims, a finding of potential importance for modulating innate responses in these patients.
T cell Ig mucin-3 (Tim-3), an immune checkpoint inhibitor, shows therapeutic potential. However, the molecular mechanism by which Tim-3 regulates immune responses remains to be determined. In particular, very little is known about how Tim-3 works in innate immune cells. Here, we demonstrated that Tim-3 is involved in the development of tumor-promoting M2 macrophages in colon cancer. Manipulation of the Tim-3 pathway significantly affected the polarization status of intestinal macrophages and the progression of colon cancer. The Tim-3 signaling pathway in macrophages was explored using microarray, co-immunoprecipitation, gene mutation, and high-content analysis. For the first time, we demonstrated that Tim-3 polarizes macrophages by directly binding to STAT1 via residue Y256 and Y263 in its intracellular tail and inhibiting the STAT1-miR-155-SOCS1 signaling axis. We also identified a new signaling adaptor of Tim-3 in macrophages, and, by modulating the Tim-3 pathway, demonstrated the feasibility of altering macrophage polarization as a potential tool for treating this kind of disease.
Background: Circular RNA (circRNA) has been proven to play a significant role in multiple types of cancer. However, the expression and role of circRNAs in epithelial ovarian cancer (EOC) remains elusive. Methods: CircRNA and mRNA expression profiles of EOC were screened with sequencing analysis. Gene silencing and over-expression were used to study circRNA function. Cell proliferation and Matrigel invasion assays were used to detect cell proliferation and invasion, respectively. The expression of circRNAs, mRNAs and miRNAs was detected using qPCR. The location of circRNAs was detected using FISH. The expression of proteins was detected using western blot and immunohistochemistry. Results: CircMUC16 had increased expression in EOC tissues as compared to healthy ovarian tissues. The expression of circMUC16 was linked to the progression in stage and grade of EOC. Hence, silencing circMUC16 suppressed autophagy flux of SKOV3 cells. In contrast, ectopic expression of circMUC16 promoted autophagy flux of A2780 cells. CircMUC16-mediated autophagy exacerbated EOC invasion and metastasis. Mechanistically, circMUC16 could directly bind to miR-199a-5p and relieve suppression of target Beclin1 and RUNX1. In turn, RUNX1 elevated the expression of circMUC16 via promotion of its transcription. CircMUC16 could directly bind to ATG13 and promote its expression. Conclusion: This study demonstrated that circMUC16 regulated Beclin1 and RUNX1 by sponging miR-199a-5p. The data suggested that circMUC16 could be a potential target for EOC diagnosis and therapy.
MARCH5 is a crucial regulator of mitochondrial fission. However, the expression and function of MARCH5 in ovarian cancer have not been determined. This study investigated the expression and function of MARCH5 in ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as its usefulness as an early diagnostic marker. We found that the expression of MARCH5 was substantially upregulated in ovarian cancer tissue in comparison with the normal control. Silencing MARCH5 in SKOV3 cells decreased TGFB1-induced cell macroautophagy/autophagy, migration, and invasion in vitro and in vivo, whereas the ectopic expression of MARCH5 in A2780 cells had the opposite effect. Mechanistic investigations revealed that MARCH5 RNA may function as a competing endogenous RNA (ceRNA) to regulate the expression of SMAD2 and ATG5 by competing for MIR30A. Knocking down SMAD2 or ATG5 can block the effect of MARCH5 in A2780 cells. Also, silencing the expression of MARCH5 in SKOV3 cells can inhibit the TGFB1-SMAD2/3 pathway. In contrast, the ectopic expression of MARCH5 in A2780 cells can activate the TGFB1-SMAD2/3 pathway. In turn, the TGFB1-SMAD2/3 pathway can regulate MARCH5 and ATG5 through MIR30A. Overall, the results of this study identified MARCH5 as a candidate oncogene in ovarian cancer and a potential target for ovarian cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.