Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5vol% MWCNTs into the composites. The average magnitude of microwave transmission reaches −33dB at 11–12GHz in the 10vol% MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons.
Anisotropy in crystals arises from different lattice periodicity along different crystallographic directions, and is usually more pronounced in two dimensional (2D) materials. Indeed, in the emerging 2D materials, electrical anisotropy has been one of the recent research focuses. However, key understandings of the in-plane anisotropic resistance in low-symmetry 2D materials, as well as demonstrations of model devices taking advantage of it, have proven difficult. Here, we show that, in few-layered semiconducting GaTe, electrical conductivity anisotropy between
x
and
y
directions of the 2D crystal can be gate tuned from several fold to over 10
3
. This effect is further demonstrated to yield an anisotropic non-volatile memory behavior in ultra-thin GaTe, when equipped with an architecture of van der Waals floating gate. Our findings of gate-tunable giant anisotropic resistance effect pave the way for potential applications in nanoelectronics such as multifunctional directional memories in the 2D limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.