A series of positionally pure triglycerides (TAGs) of the form OXO and YOY, where O is the oleate moiety and X and Y are large arrays of different fatty acid moieties, was synthesized and analyzed by reversed-phase high-performance liquid chromatography/tandem mass spectrometry. The intensities of the collision-induced decomposition (CID) products of ammoniated TAGs (ammonium ion adducts) were examined as a function of chain length, degree of unsaturation, double-bond position, and cis/trans configuration of X and Y. The major CID products, the diglyceride fragment ions and the MH+ ion, were plotted as functions of chain length for the saturated and mono-unsaturated series of X and Y. Different trends for each of these series were observed. Trends in the abundances of these fragment ions were also characterized as a function of degree of unsaturation in the TAGs. In general, the fractional abundances of the MH+ ions vary linearly with degree of unsaturation. However, the presence of double bonds positioned close to the carbonyl carbon of the fatty acid chain promotes the formation of the diglyceride fragment ion corresponding to loss of that fatty acid. Mechanisms of the formation and decomposition of ammoniated TAGs are proposed that fit the trends observed in the data. Extensions of this work are described, and a vision of a derived library of CID spectra is discussed as a platform for comprehensive analysis of complex TAG mixtures.
A series of positionally pure triglycerides (TAGs) of the form PXP and YPY, where P is the palmitate moiety and X and Y are large arrays of different fatty acid moieties, is synthesized and analyzed by reversed-phase high-performance liquid chromatography/tandem mass spectrometry. The intensities of the collision-induced decomposition (CID) products of ammoniated TAGs were examined as a function of chain length, degree of unsaturation, double-bond position, and cis/trans configuration of X and Y. The major CID products, the diglyceride (DAG) fragment ions and the MH(+) ions, are plotted as functions of chain length for the saturated and monounsaturated series of X and Y. Different trends for each of these series are observed. Trends in the intensities of these fragment ions are also characterized as a function of degree of unsaturation in the TAGs. In general, the fractional intensities of MH(+) increase with increasing degree of unsaturation in the TAGs. MH(+) is absent in the CID spectra of triglycerides containing three saturated fatty acid moieties, suggesting that the presence of double bonds fosters the formation of MH(+). Double bonds positioned close to the carbonyl carbon along the fatty acid chain promote the formation of the DAG fragment ion corresponding to the loss of the fatty acid. The collection of PXP/YPY data produced in this work is used to test the mechanisms of the formation and decomposition of ammoniated TAGs that were previously presented. The YPY data are used to predict the intensities of the fragment ions in the CID spectra of YPX-type TAGs. The limitations of the mathematical approach used in these predictions are discussed in context of a broader plan to develop a software platform for comprehensive analysis of complex TAG mixtures.
N2O formation over Cu-SSZ-13 during selective catalytic reduction (SCR) of NOx with NH3 under different conditions was experimentally investigated based on a flow reactor and in situ diffused reflectance infrared Fourier transform spectroscopy experiments. The results show that the NSCR and the nonselective NH3 oxidation are the major pathways for N2O formation over Cu-SSZ-13. N2O formation at low and high temperatures usually occurs via different mechanisms. The N2O formation at low temperatures is mainly ascribed to the decomposition of NH4NO3, which mainly forms on Cu(OH)+, while at high temperatures, N2O is formed because of the NH3 oxidation by O2 and NOx. Besides, the effect of ANR, NO2/NOx ratio, and O2 and H2O concentrations on N2O formation were also studied. They all affect N2O formation, and the effects on the two mechanisms are totally different at low and high temperatures.
Clinical human genetic studies have recently identified the tetrodotoxin (TTX) sensitive neuronal voltage gated sodium channel Nav1.7 (SCN9A) as a critical mediator of pain sensitization. Herein, we report structure-activity relationships for a novel series of 2,4-diaminotriazines that inhibit hNav1.7. Optimization efforts culminated in compound 52, which demonstrated pharmacokinetic properties appropriate for in vivo testing in rats. The binding site of compound 52 on Nav1.7 was determined to be distinct from that of local anesthetics. Compound 52 inhibited tetrodotoxin-sensitive sodium channels recorded from rat sensory neurons and exhibited modest selectivity against the hERG potassium channel and against cloned and native tetrodotoxin-resistant sodium channels. Upon oral administration to rats, compound 52 produced dose- and exposure-dependent efficacy in the formalin model of pain.
A fast Newton-Krylov solver for seasonally varying global ocean biogeochemistry models ABSTRACT. Observations show that the Greenland ice sheet has been losing mass at an increasing rate over the past few decades, which makes it a major contributor to sea-level rise. Here we use a threedimensional higher-order ice-flow model, adaptive mesh refinement and inverse methods to accurately reproduce the present-day ice flow of the Greenland ice sheet. We investigate the effect of the ice thermal regime on (1) basal sliding inversion and (2) projections over the next 100 years. We show that steady-state temperatures based on present-day conditions allow a reasonable representation of the thermal regime and that both basal conditions and century-scale projections are weakly sensitive to small changes in the initial temperature field, compared with changes in atmospheric conditions or basal sliding. We conclude that although more englacial temperature measurements should be acquired to validate the models, and a better estimation of geothermal heat flux is needed, it is reasonable to use steady-state temperature profiles for short-term projections, as external forcings remain the main drivers of the changes occurring in Greenland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.