Flow sensors found in animals often feature soft and slender structures (e.g. fish neuromasts, insect hairs, mammalian stereociliary bundles, etc) that bend in response to the slightest flow disturbances in their surroundings and heighten the animal’s vigilance with respect to prey and/or predators. However, fabrication of bioinspired flow sensors that mimic the material properties (e.g. low elastic modulus) and geometries (e.g. high-aspect ratio (HAR) structures) of their biological counterparts remains a challenge. In this work, we develop a facile and low-cost method of fabricating HAR cantilever flow sensors inspired by the mechanotransductory flow sensing principles found in nature. The proposed workflow entails high-resolution 3D printing to fabricate the master mould, replica moulding to create HAR polydimethylsiloxane (PDMS) cantilevers (thickness = 0.5–1 mm, width = 3 mm, aspect ratio = 20) with microfluidic channel (150 μm wide × 90 μm deep) imprints, and finally graphene nanoplatelet ink drop-casting into the microfluidic channels to create a piezoresistive strain gauge near the cantilever’s fixed end. The piezoresistive flow sensors were tested in controlled airflow (0–9 m s−1) inside a wind tunnel where they displayed high sensitivities of up to 5.8 kΩ m s−1, low hysteresis (11% of full-scale deflection), and good repeatability. The sensor output showed a second order dependence on airflow velocity and agreed well with analytical and finite element model predictions. Further, the sensor was also excited inside a water tank using an oscillating dipole where it was able to sense oscillatory flow velocities as low as 16–30 μm s−1 at an excitation frequency of 15 Hz. The methods presented in this work can enable facile and rapid prototyping of flexible HAR structures that can find applications as functional biomimetic flow sensors and/or physical models which can be used to explain biological phenomena.
A soft gripper inspired by the glowing sucker octopus (Stauroteuthis syrtensis)’ highly evolved grasping capability enabled by the umbrella‐shaped dorsal and ventral membrane between each arm is presented here, comprising of a 3D‐printed linkage mechanism used to actuate a modular mold silicone‐casting soft suction disc to deform. The soft gripper grasp can lift objects using the suction generated by the pump in the soft disc. Moreover, the protruded funnel‐shaped end of the deformed suctorial mouth can adapt to smooth and rough surfaces. Furthermore, when the gripper contacts the submerged target objects in a turbid environment, local suctorial mouth arrays on the suction disc are locked, causing the variable flow inside them, which can be detected as a tactile perception signal to the target objects instead of visual perception. Aided by the 3D‐printed linkage mechanism, the soft gripper can grasp objects of different shapes and dimensions, including flat objects, objects beyond the grasping range, irregular objects, scattered objects, and a moving turtle. The results report the soft gripper's versatility and demonstrate the vast application potentials of self‐adaptive grasping and sensing in various environments, including but are not limited to underwater, which is always a key challenge of grasping technology.
The lateral line system (LLS) is a mechanoreceptive organ system with which fish and aquatic amphibians can effectively sense the surrounding flow field. The reverse Kármán vortex street (KVS), known to be a typical thrust-producing wake, is commonly observed in fish-like locomotion and is known to be generated by fish's tails. The vortex street generally reflects the motion information of the fish. A fish can use LLS to detect such vortex streets generated by its neighboring fish, thus sensing its own state and the states of its neighbors in a school of fish. Inspired by this typical biological phenomenon, we design a robotic fish with an onboard artificial lateral line system (ALLS) composed of pressure sensor arrays and use it to detect the reverse KVS-like vortex wake generated by its adjacent robotic fish. Specifically, the vortex wake results in hydrodynamic pressure variations (HPVs) in the flow field. By measuring the HPV using the ALLS and extracting meaningful information from the pressure sensor readings, the oscillating frequency/amplitude/offset of the adjacent robotic fish, the relative vertical distance and the relative yaw/pitch/roll angle between the robotic fish and its neighbor are sensed efficiently. This work investigates the hydrodynamic characteristics of the reverse KVS-like vortex wake using an ALLS. Furthermore, this work demonstrates the effectiveness and practicability of an artificial lateral line in local sensing for adjacent underwater robots, indicating the potential to improve close-range interaction and cooperation within a group of underwater vehicles through the application of ALLSs in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.