Summary Vascular endothelium dysfunction plays a pivotal role in the initiation and progression of multiple organ dysfunction. The mesenchymal stem cell (MSC) maintains vascular endothelial barrier survival via secreting bioactive factors. However, the mechanism of human umbilical cord MSC (hMSC) in protecting endothelial survival remains unclear. Here, we found IGF-1 secreted by hMSC suppressed severe burn-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and alleviated the dysfunction of vascular endothelial barrier and multiple organs in severely burned rats. Severe burn repressed miR-301a-3p expression, which directly regulated IGF-1 synthesis and secretion in hMSC. Down-regulation of miR-301a-3p decreased HUVECs apoptosis, stabilized endothelial barrier permeability, and subsequently protected against multiple organ dysfunction in vivo . Additionally, miR-301a-3p negatively regulated PI3K/Akt/FOXO3 signaling through IGF-1. Taken together, our study highlights the protective function of IGF-1 against the dysfunction of multiple organs negatively regulated by miR-301a-3p, which may provide the theoretical foundation for further clinical application of hMSC.
Background: Hemorrhagic shock is the leading cause of early traumatic death. Research and discussion on restrictive fluid resuscitation have been ongoing for many years. The purpose of this study was to explore whether restrictive resuscitation can inhibit the shedding of vascular endothelial glycocalyx in the prehospital treatment of traumatic hemorrhagic shock pigs.Methods: Landrace pigs were randomly divided into a restrictive resuscitation group (restrictive group) and a conventional resuscitation group (conventional group), with 6 pigs in each group. The gunshot caused a rupture of the pig's receding right femoral artery, and the average arterial pressure was 40-45 mmHg stable for 30 minutes, which was defined as a successful shock model. The end point of resuscitation in the restrictive group was a mean arterial pressure (MAP) of 55-60 mmHg for 30 minutes, and the end point of resuscitation in the conventional group was a MAP of 70-75 mmHg for 30 minutes. The results of arterial blood gas analysis, hemodynamic indicators, endothelial glycocalyx damage and shedding marker Syndecan1 and soluble thrombomodulin (sTM) expression levels were compared between the two groups of experimental pigs after resuscitation. Results:The two groups of experimental pigs had the same baseline levels before injury in age, body weight, blood loss, cardiac output index, cardiac function index (CFI), extravascular lung water index (ELWI), and pulmonary vascular permeability index (PVPI). The arterial blood gas analysis of the two experimental pigs showed no significant difference in carbon dioxide partial pressure, oxygen partial pressure, blood oxygen saturation, or blood lactic acid after resuscitation. The difference in cardiac output index and CFI at the end of resuscitation between the two groups was not statistically significant; the absolute value and percentage of Syndecan1 level increase in the restrictive resuscitation group were lower than those in the conventional resuscitation group, and the difference was statistically significant.Conclusions: Compared with full resuscitation in a short period of prehospital treatment, restrictive resuscitation can achieve a similar effect in maintaining tissue oxygen supply and can reduce the loss of vascular endothelial glycocalyx to a certain extent.
Background: The skin morphological characteristics of the Bama miniature pig are very similar to those of humans; thus, the Bama miniature pig is an ideal choice for establishing a skin burn model. Methods:In this study, 6 ordinary, male, Bama miniature pigs (weight: 23-28 kg and length: 71-75 cm) were used to establish burn models. A mixture of 1 mg of Ketamine and Sumianxin II was used for Bama miniature pigs anesthetizing, and 1 mg of Pentobarbital sodium was added as necessary. The different burn depths were made using a continuous pressure of 1 kg and contact times of 0 s, 10 s, 15 s, 20 s, 25 s, 30 s, 35 s, 40 s, and 45 s by the newly invented electronic burn instrument. The burned tissues were collected and examined with hematoxylin and eosin (H&E) and Masson staining.Results: Burning for 10-15 s caused a first-degree burn; the blood vessels in the superficial dermis were dilated and congested, and necrosis occurred above the basal layer of the epidermis. Burning for 20-25 s caused a superficial partial-thickness burn; the whole epidermal layer was necrotic, and the collagen fibers were slightly deformed. Burning for 30-35 s caused a deep partial-thickness burn; the whole epidermal layer and dermal layers were necrotic with leukocyte infiltration zones, and the collagen fibers were disordered, degenerated, and necrotized. Burning for 40-45 s caused a third-degree burn; the skin layers and adipose tissues were necrotic, and the thick blood vessels in the skin adipose tissues were full of disintegrated and agglutinated red blood cells.Conclusions: Stable burn depth models of Bama miniature pigs were constructed using a new and innovative electronic burn instrument. Our findings provide a basis for further research on the burn mechanism and evaluations of therapeutic drugs.
Background. Early multiple organ injuries induced by severe burn predict a high mortality. Mesenchymal stem cells (MSCs) are able to repair and reconstruct the injured tissues and organs induced by trauma and diseases. However, potential protective effect and mechanism of MSCs on multiorgan injury induced by severe burn at early stage remain to be not clarified. Therefore, this study was to explore the effect and mechanism of human umbilical cord-derived MSCs (hUCMSCs) against severe burn-induced early organ injuries in rats. Methods. Adult male Wistar rats were randomly divided into sham, burn, and burn+hUCMSCsgroups. GFP-labeled hUCMSCs or PBS was intravenous injected into respective groups. Migration and distribution patterns of GFP-labeled hUCMSCs were observed by inverted fluorescence microscope. The structures and cell apoptosis of the heart, kidney, and liver were measured by immunohistochemistry. Biochemical parameters in serum were assayed by standard Roche-Hitachi methodology. Western blotting was performed on these organs of rats in the three groups to explore the underlying mechanisms. Results. At 24 hours after hUCMSCs transplantation, we found that GFP-labeled hUCMSCs mainly localized in the blood vessel of the heart, kidney, and liver and a very few cells migrated into tissues of these organs. Compared with the sham group, structure damages and cell apoptosis of these organs were induced by severe burn, and systematic administrations of hUCMSCs significantly improved the damaged structures, cell apoptosis rates, and biochemical parameters of these organs. Furthermore, IGF-1 (insulin-like growth factor 1) level in burn+hUCMSCs group was significantly higher than that in the sham and burn groups. Meanwhile, severe burn induced BCL-2/BAX significantly decreased compared to the sham group, and it was markedly increased by hUCMSCs administration. Conclusion. The hUCMSCs transplantation can attenuate severe burn-induced early organ injuries and protect multiorgan functions by encouraging migration of hUCMSCs with blood circulation and increasing protective cytokine IGF-1 level and regulating BCL-2/BAX pathway of these vital organs. Furthermore, these data might provide the theoretical foundation for further clinical applications of hUCMSCs in burn areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.