A type of iron and nitrogen codoped titania thin film was prepared by sol-gel method to degrade three typical indoor air pollutants: formaldehyde (HCHO), ammonia (NH3), and benzene (C6H6) under solar light. X-ray diffraction (XRD), UV-Vis spectroscopy, and energy dispersive spectra (EDS) were employed to characterize the photocatalysts. The results showed that the Fe/N codoped TiO2had a stronger absorption in the visible region than pure, Fe-doped, and N-doped TiO2and exhibited excellent photocatalytic ability for the degradation of indoor HCHO, NH3, and C6H6. When the three pollutants existed in indoor air at the same time, the removal percentages of HCHO, NH3, or C6H6after 6 h photocatalytic reaction under solar light reached 48.8%, 50.6%, and 32.0%. The degradation reaction of the three pollutants followed the pseudo-first-order kinetics with the reaction rate constants in the order of 0.110 h−1for ammonia, 0.109 h−1for formaldehyde, and 0.060 h−1for benzene. The reaction rate constant decreased with the increase of initial reactant concentration, which reflected that there was oxidation competition between the substrate and its intermediate during the photocatalytic process.
As a traditional dye, malachite green (MG) poses a threat to our environment and health. To decolorize MG, a composite ceramsite adsorbent composed of coal fly ash (CFA), sewage treatment sludge (STS), and waste glass (WG) with a quality ratio of 3 : 3 : 4, respectively, was prepared. The optimal preparation parameters were determined as follows: preheating
temperature
=
600
°
C
, sintering
temperature
=
1157
°
C
, and sintering
time
=
17
min
. Under optimal conditions, scanning electron microscopy (SEM) images show that the X-Com-ceramsite sample exhibits rough features and a porous structure. The obtained X-Com-ceramsite has a good MG decolorization effect (92% decolorization rate with an initial MG concentration of 56.876 mg/L). The
q
max
value of MG can reach up to 37.6 mg/g. The retention degree of MG in the X-Com-ceramsite with a relatively higher pH is stronger, and the adsorption process is spontaneous and endothermic. Synchronous fluorescence, two-dimensional correlation spectroscopy (2D-COS), and Fourier transform infrared spectroscopy (FT-IR) proved that the sensitivity of the C-O/C-O-O functional groups of the carbohydrates on the surface of the X-Com-ceramsite has a higher binding affinity toward MG as the initial concentration of MG changes.
Tetracycline (TC) is a commonly used antibiotic and enters the soil environment continuously. As humic acid (HA) is one of the most important components in soils, it is necessary to investigate the adsorption behavior of TC by HA under different conditions. In this paper, the factor of “aging” was considered. The methodology of coating CaCO3 precipitation on the surface of HA was adopted to simulate the aging process. The adsorption kinetics and isotherm demonstrated that the uptake of TC over HA was quicker with more amount than aged HA, meaning that aging affected the mass transfer of TC from the bulk solution to the outer surface of HA as well as from HA outer surface to its interior pores. To explain the effect of aging, BET was utilized to characterize the morphology of HA and aged HA. It was found that aging resulted in a decrease in specific surface area and pore size. XPS, FTIR, and 2D-COS revealed how aging influenced the chemical composition of HA. Five kinds of functional groups carried by HA contributed to the adsorption of TC, in which the binding affinity towards TC followed the order of
−
COO
>
N
−
H
>
−
C
−
C
>
C
−
O
>
O
−
H
. These results indicated that -COO was the most sensitive adsorption site. Compared to HA, the content of -COO for aged HA decreased obviously. In summary, aging affected the morphology and chemical position of HA and consequently lead to the change in adsorption kinetics and isotherm of TC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.