Background
Brain-controlled wheelchairs (BCWs) are important applications of brain–computer interfaces (BCIs). Currently, most BCWs are semiautomatic. When users want to reach a target of interest in their immediate environment, this semiautomatic interaction strategy is slow.
Methods
To this end, we combined computer vision (CV) and augmented reality (AR) with a BCW and proposed the CVAR-BCW: a BCW with a novel automatic interaction strategy. The proposed CVAR-BCW uses a translucent head-mounted display (HMD) as the user interface, uses CV to automatically detect environments, and shows the detected targets through AR technology. Once a user has chosen a target, the CVAR-BCW can automatically navigate to it. For a few scenarios, the semiautomatic strategy might be useful. We integrated a semiautomatic interaction framework into the CVAR-BCW. The user can switch between the automatic and semiautomatic strategies.
Results
We recruited 20 non-disabled subjects for this study and used the accuracy, information transfer rate (ITR), and average time required for the CVAR-BCW to reach each designated target as performance metrics. The experimental results showed that our CVAR-BCW performed well in indoor environments: the average accuracies across all subjects were 83.6% (automatic) and 84.1% (semiautomatic), the average ITRs were 8.2 bits/min (automatic) and 8.3 bits/min (semiautomatic), the average times required to reach a target were 42.4 s (automatic) and 93.4 s (semiautomatic), and the average workloads and degrees of fatigue for the two strategies were both approximately 20.
Conclusions
Our CVAR-BCW provides a user-centric interaction approach and a good framework for integrating more advanced artificial intelligence technologies, which may be useful in the field of disability assistance.
Brain-computer interfaces (BCIs) provide novel hands-free interaction strategies. However, the performance of BCIs is affected by the user’s mental energy to some extent. In this study, we aimed to analyze the combined effects of decreased mental energy and lack of sleep on BCI performance and how to reduce these effects. We defined the low-mental-energy (LME) condition as a combined condition of decreased mental energy and lack of sleep. We used a long period of work (>=18 h) to induce the LME condition, and then P300- and SSVEP-based BCI tasks were conducted in LME or normal conditions. Ten subjects were recruited in this study. Each subject participated in the LME- and normal-condition experiments within one week. For the P300-based BCI, we used two decoding algorithms: stepwise linear discriminant (SWLDA) and least square regression (LSR). For the SSVEP-based BCI, we used two decoding algorithms: canonical correlation analysis (CCA) and filter bank canonical correlation analysis (FBCCA). Accuracy and information transfer rate (ITR) were used as performance metrics. The experimental results showed that for the P300-based BCI, the average accuracy was reduced by approximately 35% (with a SWLDA classifier) and approximately 40% (with a LSR classifier); the average ITR was reduced by approximately 6 bits/min (with a SWLDA classifier) and approximately 7 bits/min (with an LSR classifier). For the SSVEP-based BCI, the average accuracy was reduced by approximately 40% (with a CCA classifier) and approximately 40% (with a FBCCA classifier); the average ITR was reduced by approximately 20 bits/min (with a CCA classifier) and approximately 19 bits/min (with a FBCCA classifier). Additionally, the amplitude and signal-to-noise ratio of the evoked electroencephalogram signals were lower in the LME condition, while the degree of fatigue and the task load of each subject were higher. Further experiments suggested that increasing stimulus size, flash duration, and flash number could improve BCI performance in LME conditions to some extent. Our experiments showed that the LME condition reduced BCI performance, the effects of LME on BCI did not rely on specific BCI types and specific decoding algorithms, and optimizing BCI parameters (e.g., stimulus size) can reduce these effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.