Rationale: Appendiceal intussusception is a rare disease. The definite preoperative diagnosis of appendiceal intussusception is rare and challenging. Here, we present a case of McSwain type V appendiceal intussusception in a 10-year-old boy. To our best knowledge, this is the first case report of a type V appendiceal intussusception that was preoperatively confirmed with sonography. Here, we have described in detail the ultrasound features and differential diagnosis of this rare disease. Patient concerns: A 10-year-old boy presented with 3 days of recurrent intermittent mild abdominal pain. The result of ultrasonography suggested an ileocolic intussusception and a therapeutic air-contrast enema was requested to reduce the intussusception but failed at a local hospital. Diagnoses: Physical exam revealed mild tenderness in the lower right quadrant of the abdomen. However, ultrasonography showed a target-sign in cross section and a finger-like appearance in the longitudinal view. A diagnosis of McSwain type V appendiceal intussusception was made. Interventions: The patient underwent an appendectomy after successful manual reduction on laparotomy. The appendix was successfully resected. Outcomes: Intraoperatively, the appendix was completely inverted in the cecum, and the preoperative sonographic findings were confirmed. During follow-up, there were no signs of recurrence. Lessons: Pre-operatively, on ultrasound a type V appendiceal intussusception is usually misdiagnosed as an ileocolic intussusception. Radiologists must execute caution to avoid over reliance on the sonographic findings of intussusception, especially when there is a mismatch with clinical symptoms. It is especially important to accurately understand the surgical-anatomic configuration of type V appendiceal intussusception that creates a “target-sign” and a “finger-like” layout on ultrasonography.
Metal halide perovskites have become a research highlight in the optoelectronic field due to their excellent properties. The perovskite light-emitting diodes (PeLEDs) have achieved great improvement in performance in recent years, and the construction of quasi-2D perovskites by incorporating large-size organic cations is an effective strategy for fabricating efficient PeLEDs. Here, we incorporate the fluorine meta-substituted phenethylammonium bromide (m-FPEABr) into CsPbBr3 to prepare quasi-2D perovskite films for efficient PeLEDs, and study the effect of fluorine substitution on regulating the crystallization kinetics and phase distribution of the quasi-2D perovskites. It is found that m-FPEABr allows the transformation of low-n phases to high-n phases during the annealing process, leading to the suppression of n = 1 phase and increasing higher-n phases with improved crystallinity. The rational phase distribution results in the formation of multiple quantum wells (MQWs) in the m-FPEABr based films. The carrier dynamics study reveals that the resultant MQWs enable rapid energy funneling from low-n phases to emission centers. As a result, the green PeLEDs achieve a peak external quantum efficiency of 16.66% at the luminance of 1279 cd m−2. Our study demonstrates that the fluorinated organic cations would provide a facile and effective approach to developing high-performance PeLEDs.
All-inorganic perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br, I) are promising for displays due to wide color gamut, narrow emission bandwidth, and high photoluminescence quantum yield (PLQY). However, pure red perovskite NCs prepared by mixing halide ions often result in defects and spectral instabilities. We demonstrate a method to prepare stable pure red emission and high-PLQY-mixed-halide perovskite NCs through simultaneous halide-exchange and ligand-exchange. CsPbBr3 NCs with surface organic ligands are first synthesized using the ligand-assisted reprecipitation (LARP) method, and then ZnI2 is introduced for anion exchange to transform CsPbBr3 to CsPbBrxI3−x NCs. ZnI2 not only provides iodine ions but also acts as an inorganic ligand to passivate surface defects and prevent ion migration, suppressing non-radiative losses and halide segregation. The luminescence properties of CsPbBrxI3−x NCs depend on the ZnI2 content. By regulating the ZnI2 exchange process, red CsPbBrxI3−x NCs with organic/inorganic hybrid ligands achieve near-unity PLQY with a stable emission peak at 640 nm. The CsPbBrxI3−x NCs can be combined with green CsPbBr3 NCs to construct white light-emitting diodes with high-color gamut. Our work presents a facile ion exchange strategy for preparing spectrally stable mixed-halide perovskite NCs with high PLQY, approaching the efficiency limit for display or lighting applications.
Objective. This research was to study the application value of real-time shear wave elastography (SWE) quantitative evaluation based on deep learning (DL) in the diagnosis of chronic kidney disease (CKD) in children. Methods. 60 children with pathological diagnoses of CKD were selected as a CKD group. During the same period, 45 healthy children for physical examination were selected as the control group. The application value of real-time shear-wave elastography based on DL in the evaluation of CKD in children was explored by comparing the differences between the two groups. Results. It was found that the elastic modulus values of the middle and lower parenchyma of the left kidney and right kidney in the case group were (22.02 ± 10.98) kPa and (21.99 ± 11.87) kPa, respectively, which were substantially higher compared with (4.61 ± 0.47) kPa and (4.50 ± 0.59) kPa in the control group. Young’s modulus (YM) of the middle and lower parenchyma of the left kidney in patients with CKD stages 3 to 5 was 13.27 ± 0.83, 24.21 ± 5.69, and 31.67 ± 3.82, respectively, and that of the right kidney was 17.26 ± 0.98, 26.76 ± 7.22, and 32.37 ± 4.27, respectively, and the difference was significant ( P < 0.05). In patients with moderate and severe CKD, the YM values of the middle and lower parenchyma of the left kidney were 17.27 ± 0.83, 27.93 ± 6.49, and those of the right kidney were 17.26 ± 0.98, 29.56 ± 6.49, respectively, and the difference was statistically significant ( P < 0.05). The serum creatinine (Scr) of the CKD group was substantially higher than that of the control group, and the estimated glomerular filtration rate (eGFR) level of the former was lower than that of the latter. However, there was no statistical difference between the YM values of the middle and lower parts of the left and right kidneys of the CKD group and the control group. Conclusion. The DL-based SWE is a new noninvasive, real-time, and quantitative detection method, which can effectively evaluate the stiffness of the kidney and help to better detect the progress of CKD as a clinical reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.