Raman spectroscopy (RS) is a widely used analytical technique based on the detection of molecular vibrations in a defined system, which generates Raman spectra that contain unique and highly resolved fingerprints of the system. However, the low intensity of normal Raman scattering effect greatly hinders its application. Recently, the newly emerged surface enhanced Raman spectroscopy (SERS) technique overcomes the problem by mixing metal nanoparticles such as gold and silver with samples, which greatly enhances signal intensity of Raman effects by orders of magnitudes when compared with regular RS. In clinical and research laboratories, SERS provides a great potential for fast, sensitive, label-free, and non-destructive microbial detection and identification with the assistance of appropriate machine learning (ML) algorithms. However, choosing an appropriate algorithm for a specific group of bacterial species remains challenging, because with the large volumes of data generated during SERS analysis not all algorithms could achieve a relatively high accuracy. In this study, we compared three unsupervised machine learning methods and 10 supervised machine learning methods, respectively, on 2,752 SERS spectra from 117 Staphylococcus strains belonging to nine clinically important Staphylococcus species in order to test the capacity of different machine learning methods for bacterial rapid differentiation and accurate prediction. According to the results, density-based spatial clustering of applications with noise (DBSCAN) showed the best clustering capacity (Rand index 0.9733) while convolutional neural network (CNN) topped all other supervised machine learning methods as the best model for predicting Staphylococcus species via SERS spectra (ACC 98.21%, AUC 99.93%). Taken together, this study shows that machine learning methods are capable of distinguishing closely related Staphylococcus species and therefore have great application potentials for bacterial pathogen diagnosis in clinical settings.
Heteronemerteans, such as Lineus ruber, L. viridis, Ramphogordius sanguineus, R. lacteus, Riseriellus occultus, and Micrura varicolor, share many similar external characters. Although several internal characters useful for distinguishing these nemertean species have been documented, their identification is based mostly on coloration, the shape of the head, and how they contract, which may not be always reliable. We sequenced the mitochondrial COI gene for 160 specimens recently collected from 27 locations around the world (provisionally identified as the above species, according to external characters and contraction patterns, with most of them as R. sanguineus). Based on these specimens, together with sequences of 16 specimens from GenBank, we conducted a DNA-based species delimitation/identification by means of statistical parsimony and phylogenetic analyses. Our results show that the analyzed specimens may contain nine species, which can be separated by large genetic gaps; heteronemerteans with an external appearance similar to R. sanguineus/Lineus ruber/L. viridis have high species diversity in European waters from where eight species can be discriminated. Our 42 individuals from Vancouver Island (Canada) are revealed to be R. sanguineus, which supports an earlier argument that nemerteans reported as L. ruber or L. viridis from the Pacific Northwest may refer to this species. We report R. sanguineus from Chile, southern China, and the species is also distributed on the Atlantic coast of South America (Argentina). In addition, present analyses reveal the occurrence of L. viridis in Qingdao, which is the first record of the species from Chinese waters.
Biocontrol bacteria that can act like a "vaccine", stimulating plant resistance to pathogenic diseases, are still not fully elucidated. In this study, an endophytic bacterium, Bacillus velezensis CC09, labeled with green fluorescent protein, was tested for its colonization, migration, and expression of genes encoding iturin A synthetase within wheat tissues and organs as well as for protective effects against wheat take-all and spot blotch diseases. The results showed that strain CC09 not only formed biofilm on the root surface but was also widely distributed in almost every tissue, including the epidermis, cortex, and xylem vessels, and even migrated to stems and leaves, resulting in 66.67% disease-control efficacy (DCE) of take-all and 21.64% DCE of spot blotch. Moreover, the gene cluster encoding iturin A synthase under the control of the p promoter is expressed in B. velezensis CC09 in wheat tissues, which indicates that iturin A might contribute to the in-vivo antifungal activity and leads to the disease control. All these data suggested that strain CC09 can act like a 'vaccine' in the control of wheat diseases, with a single treatment inoculated on roots through multiple mechanisms.
Glycogen is a highly branched polysaccharide that is widely present in all life domains. It has been identified in many bacterial species and functions as an important energy storage compound. In addition, it plays important roles in bacterial transmission, pathogenicity, and environmental viability. There are five essential enzymes (coding genes) directly involved in bacterial glycogen metabolism, which forms a single operon glgBXCAP with a suboperonic promoter in glgC gene in Escherichia coli. Currently, there is no comparative study of how the disruptions of the five glycogen metabolism genes influence bacterial phenotypes, such as growth rate, biofilm formation, and environmental survival, etc. In this study, we systematically and comparatively studied five E. coli single-gene mutants (glgC, glgA, glgB, glgP, glgX) in terms of glycogen metabolism and explored their phenotype changes with a focus on environmental stress endurance, such as nutrient deprivation, low temperature, desiccation, and oxidation, etc. Biofilm formation in wild-type and mutant strains was also compared. E. coli wild-type stores the highest glycogen content after around 20-h culture while disruption of degradation genes (glgP, glgX) leads to continuous accumulation of glycogen. However, glycogen primary structure was abnormally changed in glgP and glgX. Meanwhile, increased accumulation of glycogen facilitates the growth of E. coli mutants but reduces glucose consumption in liquid culture and vice versa. Glycogen metabolism disruption also significantly and consistently increases biofilm formation in all the mutants. As for environmental stress endurance, glycogen over-accumulating mutants have enhanced starvation viability and reduced desiccation viability while all mutants showed decreased survival rate at low temperature. No consistent results were found for oxidative stress resistance in terms of glycogen metabolism disruptions, though glgA shows highest resistance toward
This study aimed to explore potential biocontrol mechanisms involved in the interference of antagonistic bacteria with fungal pathogenicity in planta . To do this, we conducted a comparative transcriptomic analysis of the “take-all” pathogenic fungus Gaeumannomyces graminis var. tritici ( Ggt ) by examining Ggt -infected wheat roots in the presence or absence of the biocontrol agent Bacillus velezensis CC09 ( Bv ) compared with Ggt grown on potato dextrose agar (PDA) plates. A total of 4,134 differentially expressed genes (DEGs) were identified in Ggt -infected wheat roots, while 2,011 DEGs were detected in Bv + Ggt -infected roots, relative to the Ggt grown on PDA plates. Moreover, 31 DEGs were identified between wheat roots, respectively infected with Ggt and Bv + Ggt , consisting of 29 downregulated genes coding for potential Ggt pathogenicity factors – e.g., para-nitrobenzyl esterase, cutinase 1 and catalase-3, and two upregulated genes coding for tyrosinase and a hypothetical protein in the Bv + Ggt -infected roots when compared with the Ggt -infected roots. In particular, the expression of one gene, encoding the ABA3 involved in the production of Ggt ’s hormone abscisic acid, was 4.11-fold lower in Ggt -infected roots with Bv than without Bv . This is the first experimental study to analyze the activity of Ggt transcriptomes in wheat roots exposed or not to a biocontrol bacterium. Our results therefore suggest the presence of Bv directly and/or indirectly impairs the pathogenicity of Ggt in wheat roots through complex regulatory mechanisms, such as hyphopodia formation, cell wall hydrolase, and expression of a papain inhibitor, among others, all which merit further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.