In mammalian cells, DNA methylation critically regulates gene expression and thus has pivotal roles in myriad of physiological and pathological processes. Here we report a novel method for targeted DNA demethylation using the widely used clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system. Initially, modified single guide RNAs (sgRNAs) (sgRNA2.0) were constructed by inserting two copies of bacteriophage MS2 RNA elements into the conventional sgRNAs, which would facilitate the tethering of the Tet1 catalytic domain (Tet-CD), in fusion with dCas9 or MS2 coat proteins, to the targeted gene loci. Subsequently, such system was shown to significantly upregulate transcription of the target genes, including RANKL, MAGEB2 or MMP2, which was in close correlation to DNA demethylation of their neighboring CpGs in the promoters. In addition, the dCas9/sgRNA2.0-directed demethylation system appeared to afford efficient demethylation of the target genes with tenuous off-target effects. Applications of this system would not only help us understand mechanistically how DNA methylation might regulate gene expression in specific contexts, but also enable control of gene expression and functionality with potential clinical benefits.
Summary In selective autophagy, receptors are central for cargo selection and delivery. However, it remains yet unclear whether and how multiple autophagy receptors might form complex and function concertedly to control autophagy. Optineurin (OPTN), implicated genetically in glaucoma and amyotrophic lateral sclerosis, was a recently identified autophagy receptor. Here we report that tumor suppressor HACE1, a ubiquitin ligase, ubiquitylates OPTN and promotes its interaction with p62/SQSTM1 to form the autophagy receptor complex, thus accelerating autophagic flux. Interestingly, the K48-linked polyubiquitin chains that HACE1 conjugates onto OPTN might predominantly target OPTN for autophagic degradation. By demonstrating that the HACE1-OPTN axis synergistically suppresses growth and tumorigenicity of lung cancer cells, our findings may open an avenue for developing autophagy-targeted therapeutic intervention into cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.