Cancer metastasis is the main cause of mortality associated with non-small-cell lung cancer (NSCLC), accounting for up to 70% of deaths among patients. The mechanisms underlying distal metastasis remain largely unknown. Golgi phosphoprotein 3 (GOLPH3) correlates negatively with overall survival in multiple tumors. In this study, we evaluated the function of GOLPH3 in NSCLC distal metastasis. GOLPH3 was expressed at high levels in samples from patients with NSCLC and was positively associated with clinicopathologic characteristics including clinical stage (P < 0.001), T (P = 0.001), N (P = 0.007), and M (P = 0.001) classification. Functionally, Transwell and wound-healing assays suggested that GOLPH3 overexpression enhances NSCLC cell migration and invasion abilities. Tumor-sphere formation and flow cytometry assays demonstrated that GOLPH3 overexpression enhances a stem cell-like phenotype of NSCLC cells. Metastasis models established by tail vein and intracardiac injection confirmed the pro-metastatic function of GOLPH3 in vivo. A subcutaneous tumor formation model confirmed that GOLPH3 overexpression increased the tumorigenicity of NSCLC cells. Mechanistically, gene set enrichment analysis revealed a positive association of GOLPH3 mRNA expression with WNT-activated gene signatures. Luciferase-reporter and nuclear extract assays showed that GOLPH3 overexpression enhances metastasis and tumorigenicity through activation of the WNT/β-catenin pathway. Immunoprecipitation-mass spectrometry and gene ontology analysis demonstrated that GOLPH3 interacts with cytoskeleton-associated protein 4 (CKAP4) in exosome-mediated distal metastasis. We found that GOLPH3 decreased the amount of plasma membrane-localized CKAP4 and increased the amount of exosome-localized CKAP4 to promote the formation of CKAP4-containing exosomes. Furthermore, we demonstrated that CKAP4 binds exosomal WNT3A to enhance its secretion. Therefore, the GOLPH3/CKAP4 axis plays a crucial role in promoting exosomal-WNT3A secretion to enhance and maintain the stem-like phenotype and metastasis in NSCLC, thus indicating the therapeutic potential of GOLPH3 in patients with NSCLC metastasis.
Summary DNA double-strand break (DSB) repair by homologous recombination (HR) is essential for ensuring genome stability. Abnormal spindle-like microcephaly-associated ( ASPM ) gene encodes a spindle protein that is commonly implicated in primary microcephaly. We found that ASPM is recruited to sites of DNA damage in a PARP2-dependent manner. ASPM interacts with BRCA1 and its E3 ligase HERC2, preventing HERC2 from accessing to BRCA1 and ensuring BRCA1 stability. Inhibition of ASPM expression promotes HERC2-mediated BRCA1 degradation, compromises HR repair efficiency and chromosome stability, and sensitizes cancer cells to ionizing radiation. Moreover, we observed a synergistic effect between ASPM and PARP inhibition in killing cancer cells. This research has uncovered a novel function for ASPM in facilitating HR-mediated repair of DSBs by ensuring BRCA1 stability. ASPM might constitute a promising target for synthetic lethality-based cancer therapy.
ASPM is a protein encoded by primary microcephaly 5 ( MCPH5 ) and is responsible for ensuring spindle position during mitosis and the symmetrical division of neural stem cells. We recently reported that ASPM promotes homologous recombination (HR) repair of DNA double strand breaks. However, its potential role in DNA replication and replication stress response remains elusive. Interestingly, we found that ASPM is dispensable for DNA replication under unperturbed conditions. However, ASPM is enriched at stalled replication forks in a RAD17-dependent manner in response to replication stress and promotes RAD9 and TopBP1 loading onto chromatin, facilitating ATR-CHK1 activation. ASPM depletion results in failed fork restart and nuclease MRE11-mediated nascent DNA degradation at the stalled replication fork. The overall consequence is chromosome instability and the sensitization of cancer cells to replication stressors. These data support a role for ASPM in loading RAD17-RAD9/TopBP1 onto chromatin to activate the ATR-CHK1 checkpoint and ultimately ensure genome stability.
Autosomal recessive primary microcephaly, also known as MCPH, is a rare genetic condition where infants are born with small heads and brains. The causes of MCPH are often unknown or unclear. To date, 25 genes have been found to be associated with MCPH. Most of these genes serve similar roles in maintaining genome stability, being associated with centrosome and spindle function, chromosome dynamics, cell cycle regulation, cell division, brain development, neurogenesis, and/or the DNA damage response. In this review, we classify MCPH-associated genes based on their known functions, and propose potential novel functions of MCPH genes in DNA replication and/or the DNA replication stress response, and tumorigenesis. This classification provides a novel perspective on the underlying causes of MCPH and a comprehensive reference for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.