Bursaphelenchus xylophilus is fatal to the pine trees around the world. The production of the pine tree secondary metabolite gradually increases in response to a B. xylophilus infestation, via a stress reaction mechanism(s). α-pinene is needed to combat the early stages of B. xylophilus infection and colonization, and to counter its pathogenesis. Therefore, research is needed to characterize the underlying molecular response(s) of B. xylophilus to resist α-pinene. We examined the effects of different concentrations of α-pinene on the mortality and reproduction rate of B. xylophilus in vitro. The molecular response by which B. xylophilus resists α-pinene was examined via comparative transcriptomics of the nematode. Notably, B. xylophilus genes involved in detoxification, transport, and receptor activities were differentially expressed in response to two different concentrations of α-pinene compared with control. Our results contribute to our understanding of the molecular mechanisms by which B. xylophilus responds to monoterpenes in general, and the pathogenesis of B. xylophilus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.