The BeiDou navigation satellite system shows its potential for passive radar vessel target detection owing to its global-scale coverage. However, the restrained power budget from BeiDou satellite hampers the detection performance. To solve this limitation, this paper proposes a long-time optimized integration method to obtain an adequate signal-to-noise ratio (SNR). During the long observation time, the range migration, intricate Doppler migration, and noncoherence characteristic bring challenges to the integration processing. In this paper, first, the keystone transform is applied to correct the range walk. Then, considering the noncoherence of the entire echo, the hybrid integration strategy is adopted. To remove the Doppler migration and correct the residual range migration, the long-time integration is modeled as an optimization problem. Finally, the particle swarm optimization (PSO) algorithm is applied to solve the optimization problem, after which the target echo over the long observation time is well concentrated, providing a reliable detection performance for the BeiDou-based passive radar. Its effectiveness is shown by the simulated and experimental results.
BackgroundThe H1N1 pandemic in 2009 and the H5N1 pandemic in 2005 demonstrated that the drugs approved to treat influenza A viruses have low efficacy. This provided a stimulus for new studies of influenza A viruses in the context of the methods used in drug design developed over the past 100 years. Finding new universal drugs is the ultimate goal but its long time horizon is incompatible with emergency situations created by reoccurring influenza outbreaks. Therefore, we propose a computer-aided method for finding efficacious drugs and drug complexes based on the use of the DrugBank database.Methods(1) We start by assembling a panel of target proteins. (2) We then assemble a panel of drugs. (3) This is followed by a selection of benchmark binding pockets based on the panel of target proteins and the panel of drugs. (4) We generate a set of computational features, which measure the efficacy of a drug. (5) We propose a universal program to search for drugs and drug complexes. (6) A case study we report here illustrates how to use this universal program for finding an optimal drug and a drug complex for a given target. (7) Validation of the Azirchromycin and Aspirin complex is provided mathematically. (8) Finally, we propose a simple strategy to validate our computational prediction that the Azirchromycin and Aspirin complex should prove clinically effective.ResultA set of computable features are mined and then based on these features, a universal program for finding the potential drug &drug complexes is proposed. Using this universal program, the Azirchromycin and Aspirin complex is selected and its efficacy is predicted mathematically. For clinical validation of this finding, future work is still required.
The protein quaternary structure is very important to the biological process. Predicting their attributes is an essential task in computational biology for the advancement of the proteomics. However, the existing methods did not consider sufficient properties of amino acid. To end this, we proposed a hybrid method Quad-PRE to predict protein quaternary structure attributes using the properties of amino acid, predicted secondary structure, predicted relative solvent accessibility, and position-specific scoring matrix profiles and motifs. Empirical evaluation on independent dataset shows that Quad-PRE achieved higher overall accuracy 81.7%, especially higher accuracy 92.8%, 93.3%, and 90.6% on discrimination for trimer, hexamer, and octamer, respectively. Our model also reveals that six features sets are all important to the prediction, and a hybrid method is an optimal strategy by now. The results indicate that the proposed method can classify protein quaternary structure attributes effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.