Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid disorders characterized by peripheral blood cytopenias and a high risk of progression to acute myeloid leukaemia (AML). Fucoidan, a complex sulphated polysaccharide isolated from the cell wall of brown seaweeds, has recently attracted attention for its multiple biological activities and its potential as a novel candidate for cancer therapy. In the present study, the anti-cancer activity of fucoidan was investigated in the MDS/AML cell line SKM-1. Fucoidan inhibited proliferation, induced apoptosis and caused G1-phase arrest of the cell cycle in SKM-1 cells as determined by a cell counting kit 8 assay and flow cytometry. Furthermore, reverse transcription quantitative polymerase chain reaction and western blot analyses indicated that treatment with fucoidan (100 µg/ml for 48 h) activated Fas and caspase-8 in SKM-1 cells, which are critical for the extrinsic apoptotic pathway; furthermore, caspase-9 was activated via decreases in phosphoinositide-3 kinase/Akt signaling as indicated by reduced levels of phosphorylated Akt, suggesting the involvement of the intrinsic apoptotic pathway. In addition, fucoidan treatment of SKM-1 cells resulted in the generation of reactive oxygen species (ROS) as determined by staining with dichloro-dihydro-fluorescein diacetate. These results suggested that the mechanisms of the anti-cancer effects of fucoidan in SKM-1 are closely associated with cell cycle arrest and apoptotic cell death, which partly attributed to the activation of apoptotic pathways and accumulation of intracellular ROS. Our results demonstrated that Fucoidan inhibits proliferation and induces the apoptosis of SKM-1 cells, which provides substantial therapeutic potential for MDS treatment.
Diffuse large B-cell lymphoma (DLBCL) is the most common type of adult lymphoma. It is a group of malignant tumors with a large number of clinical manifestations and prognoses. Therefore, it is necessary to explore its unknown potential therapeutic targets. Histone deacetylase inhibitor (HDACi) is a novel drug for the treatment of DLBCL, however pan-HDACis cannot be ignored because of their clinical efficacy. By contrast, specific HDACi is well-tolerated, and LMK-235 is a novel HDACi that is a specific inhibitor of HDAC4 and HDAC5. In this study, we investigated the up-regulation of BCLAF1 through NF-κB signaling pathways in LMK-235, mediating the apoptosis of two diffuse large B-cell lymphoma cell lines, OCI-LY10 and OCI-LY3. Further studies showed that BCLAF1 expression was increased in DLBCL cells after treatment with the NF-κB inhibitor Bay11-7082. The combination of Bay11-7082 and siRNA si-HDAC4 significantly increased BCLAF1 expression and further increased apoptosis. These results indicate that BCLAF1 plays an important role in LMK-235-mediated apoptosis and may be a potential target for the treatment of diffuse large B-cell lymphoma.
Although the function of miRNAs is not fully understood, these small non-coding RNAs represent novel pathogenetic and clinical implications in MDS. The studies of miRNAs may guide us towards a better understanding of this disease and shed light on the development of new therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.