SARS-CoV-2 has caused COVID-19 pandemic globally in the beginning of 2020, and qualitative real-time RT-PCR has become the gold standard in diagnosis. As SARSCoV-2 with strong transmissibility and pathogenicity, it has become a professional consensus that clinical samples from suspected patients should be heat inactivated at 56°C for 30 min before further processing. However, previous studies on the effect of inactivation on qualitative realtime RT-PCR were conducted with diluted samples rather than clinical samples. The aim of this study was to investigate whether heat inactivation on clinical samples before detection will affect the accuracy of qualitative real-time RT-PCR detection. All 46 throat swab samples from 46 confirmed inpatients were detected by qualitative real-time RT-PCR directly, as well as after heat inactivation. Heat-Inactivation has significantly influenced the qualitative detection results on clinical samples, especially weakly positive samples. The results indicate the urgency to establish a more suitable protocol for COVID-19 clinical sample's inactivation.
Advances in lab-on-a-chip technologies are driven by the pursuit of programmable microscale bioreactors or fluidic processors that mimic electronic functionality, scalability, and convenience. However, few fluidic mechanisms allow for basic logic operations on rewritable fluidic paths due to cross-contamination, which leads to random interference between “fluidic bits” or droplets. Here, we introduce a mechanism that allows for contact-free gating of individual droplets based on the scalable features of acoustic streaming vortices (ASVs). By shifting the hydrodynamic equilibrium positions inside interconnected ASVs with multitonal electrical signals, different functions such as controlling the routing and gating of droplets on rewritable fluidic paths are demonstrated with minimal biochemical cross-contamination. Electrical control of this ASV-based mechanism allows for unidirectional routing and active gating behaviors, which can potentially be scaled to functional fluidic processors that can regulate the flow of droplets in a manner similar to the current in transistor arrays.
Acoustics-based tweezers provide a unique toolset for contactless, label-free, and precise manipulation of bioparticles and bioanalytes. Most acoustic tweezers rely on acoustic radiation forces; however, the accompanying acoustic streaming often generates unpredictable effects due to its nonlinear nature and high sensitivity to the three-dimensional boundary conditions. Here, we demonstrate acoustohydrodynamic tweezers, which generate stable, symmetric pairs of vortices to create hydrodynamic traps for object manipulation. These stable vortices enable predictable control of a flow field, which translates into controlled motion of droplets or particles on the operating surface. We built a programmable droplet-handling platform to demonstrate the basic functions of planar-omnidirectional droplet transport, merging droplets, and in situ mixing via a sequential cascade of biochemical reactions. Our acoustohydrodynamic tweezers enables improved control of acoustic streaming and demonstrates a previously unidentified method for contact-free manipulation of bioanalytes and digitalized liquid handling based on a compact and scalable functional unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.