Schedule management is an essential part of construction project management. In practical management affairs, many uncertainties may lead to potential project delays and make the schedule risky. To quantify such risk, the Probabilistic Critical Path Method (PCPM) is used to compute the overdue probability. Survey shows it could help project managers understand the schedule better. However, two critical factors limited the application of PCPM: computational efficiency and timeliness. To solve these constraints, we combined subset simulation and statistical learning to build a computationally efficient and dynamic simulation system. Numerical experiment shows that this method can effectively improve the computation efficiency without losing any accuracy and outperforms the other approaches with the same assumptions. Besides, we proposed a machine learning-based way to estimate task duration distributions in PCPM automatically. It collects real-time progress data through user interactions and learns the best PERT-Beta parameters based on these historical data. Our estimator provides our simulation system the ability to handle dynamic assessment without laborious human work. These improvements reduce the limitations of PCPM, making the application of PCPM in practical management affairs possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.