Head injuries in the vehicle crashes or pedestrian accidents can usually cause death or permanent disabilities, and head injuries resulting from the impact of car windshields remain a major problem. Anatomically, more realistic head models are required to more accurately document and evaluate the head-to-windshield impact responses and head injuries. The current study developed a head finite element model and carried out various simulations to investigate the head-to-windshield impact biomechanical responses and assess the head injuries. First, a 50th percentile three-dimensional finite element head model was developed and validated by using previously published cadaver experimental data. Then, the biomechanical responses were predicted under a head-to-windshield impact at different impact velocities (10, 12, and15[Formula: see text]m/s) and different inclination angles of the windshield (35∘, 40∘, and 45∘). Finally, head injuries were investigated through examining various injury parameters. The results indicated that the contact force, the acceleration, the intracranial pressure, the deformation of the skull, and the negative pressure rose when the impact velocity and the inclination angles increased. Thus, the vehicle impact velocity and the inclination angle of the windshield greatly affect the severity of the resulting injuries on pedestrians’ heads, with the severity increasing with the impact velocity and windshield inclination angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.