This review summarizes recent developments in using bioorthogonal chemistry in prodrug design for the delivery of traditional small molecule- and gasotransmitter-based therapeutics.
Carbon monoxide is an intrinsic signaling molecule with importance on par with that of nitric oxide. During the past decade, pharmacological studies have amply demonstrated the therapeutic potential of carbon monoxide. However, such studies were mostly based on CO inhalation and metal-based CO releasing molecules (CO-RMs). The field is now at the stage that a major effort is needed to develop pharmaceutically acceptable forms of CO for delivery via various routes such as oral, injection, infusion, or topical applications. This review examines the state of the art, discusses existing hurdles to overcome, and proposes developmental strategies necessary to address remaining drug delivery issues.
Direct-acting antiviral agents (DAAs) represent a class of drugs targeting viral proteins and have been demonstrated to be very successful in combating viral infections in clinic. However, DAAs suffer from several inherent limitations, including narrow-spectrum antiviral profiles and liability to drug resistance, and hence there are still unmet needs in the treatment of viral infections. In comparison, host targeting antivirals (HTAs) target host factors for antiviral treatment. Since host proteins are probably broadly required for various viral infections, HTAs are not only perceived, but also demonstrated to exhibit broad-spectrum antiviral activities. In addition, host proteins are not under the genetic control of viral genome, and hence HTAs possess much higher genetic barrier to drug resistance as compared with DAAs. In recent years, much progress has been made to the development of HTAs with the approval of chemokine receptor type 5 antagonist maraviroc for human immunodeficiency virus treatment and more in the pipeline for other viral infections. In this review, we summarize various host proteins as antiviral targets from a medicinal chemistry prospective. Challenges and issues associated with HTAs are also discussed. K E Y W O R D S broad-spectrum antivirals, direct-acting antiviral agents, drug resistance, host targeting antiviral agents
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.