Insufficient driving forces defined as the energetic offsets of the frontier molecular orbitals between a donor and an acceptor influence the charge separation in organic solar cells (OSCs), thus restricting the improvement of quantum efficiencies. Herein, we demonstrate that enhancing charge transfer between fullerene and non-fullerene acceptors via ternary strategy is an effective method to address this problem. By introducing an electron acceptor [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the third component to the binary blends based on the polymer donor of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)] (PBDB-TF) and the small-molecule acceptor of 2,2′-((2Z,2′Z)-(((2,5-difluoro-1,4-phenylene)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-6,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (HF-PCIC) or 2,2′-((2Z,2′Z)-(((2,5-difluoro-1,4-phenylene)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-6,2-diyl))bis(methanylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (HC-PCIC) with unfused cores, the quantum efficiencies can be boosted from ∼70% for binary blends to over 80% for ternary blends in the longer wavelength ranges. PC71BM shows lower energy levels and higher electron mobility, benefiting the charge transfer and transport in ternary OSCs and resulting in an enhanced quantum efficiency. As a result, ternary OSCs based on PBDB-TF/HF-PCIC/PC71BM and PBDB-TF/HC-PCIC/PC71BM exhibit high power conversion efficiencies (PCEs) of 11.55 and 12.36%, respectively. In addition, excellent thermal stabilities are realized for both ternary OSCs, which retained ∼80% initial PCEs after thermal treatment at 130 °C for 12 h, indicating that the active layer morphology containing fullerene/non-fullerene acceptors is stabilized. This work demonstrates efficient and thermally stable ternary OSCs with enhanced charge transfer between fullerene and non-fullerene acceptors via the modulation of energy levels, which helps to better understand the working mechanism of ternary OSCs.
BackgroundSepsis is a life-threatening complication of an infection and remains one of the leading causes of mortality in surgical patients. Bacteremia induces excessive inflammatory responses that result in multiple organ damage. Chronic helminth infection and helminth-derived materials have been found to immunomodulate host immune system to reduce inflammation against some allergic or inflammatory diseases. Schistosoma japonicum cystatin (Sj-Cys) is a cysteine protease inhibitor that induces regulatory T-cells and a potential immunomodulatory. The effect of Sj-Cys on reducing sepsis inflammation and mortality was investigated.MethodsSepsis was induced in BALB/c mice using cecal ligation and puncture (CLP), followed by intraperitoneal injection of different doses (10, 25 or 50 μg) of recombinant Sj-Cys (rSj-Cys). The therapeutic effect of rSj-Cys on sepsis was evaluated by observing the survival rates of mice for 96 h after CLP and the pathological injury of liver, kidney and lung by measuring the levels of alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN) and creatinine (Cr) in sera and the tissue sections pathology, and the expression of MyD88 in liver, kidney and lung tissues. The immunological mechanism was investigated by examining pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and IL-10 and TGF-β1 in mice sera and in culture of macrophages stimulated by lipopolysaccharides (LPS).ResultsrSj-Cys treatment provided significant therapeutic effects on CLP-induced sepsis in mice demonstrated with increased survival rates, alleviated overall disease severity and tissue injury of liver, kidney and lung. The rSj-Cys conferred therapeutic efficacy was associated with upregualted IL-10 and TGF-β1 cytokines and reduced pro-inflammatory cytokines TNF-α, IL-6, IL-1β. MyD88 expression in liver, kidney and lung tissues of rSj-Cys-treated mice was reduced. In vitro assay with macrophages also showed that rSj-Cys inhibited the release of pro-inflammatory cytokines and mediator nitric oxide (NO) after being stimulated by lipopolysaccharide (LPS).ConclusionsThe results suggest the anti-inflammatory potential of rSj-Cys as a promising therapeutic agent on sepsis. The immunological mechanism underlying its therapeutic effect may involve the downregulation of pro-inflammatory cytokines and upregulation of IL-10 and TGF-β1 cytokines possibly via downregulation of the TLR adaptor-transducer MyD88 pathway. The findings suggest rSj-Cys is a potential therapeutic agent for sepsis and other inflammatory diseases.
Couple-based interventions may be an adjunctive method for cancer patients and their spouses to improve HRQoL. Further study concerning couple-based skill training and blending intervention are needed to better understand intervention effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.