Water soluble polymers are widely used as mobility control agents for enhanced oil recovery (EOR). Yet, in harsh reservoir environments (i.e., elevated temperatures and high ionic strength), the applicability of conventional polymers is limited. This issue has been somewhat resolved through the chemical synthesis of polymers having functional moieties such as sulfonic acid groups and/or n-vinylpyrrolidone. Another approach to circumvent expensive chemical syntheses, it is the formulation of supramolecular polymers built via non-covalent and β-cyclodextrin (β-CD) host-guest interactions. In this study, an advanced polymer-surfactant (SAP-AP1) system formulated via the self-assembling of an associative polymer with an anionic surfactant and β-CD was evaluated as a mobility control agent to displace and recover heavy oil (i.e., 2560 cP at 25°C). Displacement tests employing unconsolidated sand-pack systems were carried out at simulated heavy oil reservoir conditions. The experimental results demonstrate that the SAP-AP1 produces a stable viscous displacement front that results in more efficient volumetric sweep, faster reduction of the water/oil ratio (WOR), and incremental oil recovery (e.g., 19% higher incremental oil recovery relative to the baseline polymer). The SAP-AP1 system shows potential for EOR applications at economically favorable conditions.
This chapter summarizes the formulation of supramolecular polymers built via noncovalent and β-cyclodextrin (β-CD) host-guest interactions. The self-assembling polymeric (SAP-AP) systems were formulated by mixing associative polymers with an anionic surfactant and β-CD. These SAP-AP systems were characterized by rheological analysis and several techniques to establish their stability under mechanical shear, high ionic strength, and high temperature. The experimental results demonstrate that the SAP-AP systems display enhanced viscoelastic properties, shear stability, superior structural strength, and tolerance to high-salinity brines relative to the corresponding baseline polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.