Using ultrasonic velocity and anisotropy measurements on a variety of shales with different clay and kerogen content, clay mineralogy, and porosity at a wide range of effective pressure, we find that elastic anisotropy of shales increases substantially with compaction. The effect is attributed to both porosity reduction and smectite‐ to‐illite transformation with diagenesis. A means of kerogen content mapping using velocity versus porosity crossplot for shales is shown. Matrix anisotropy of shales dramatically increases with kerogen reaching the maximum values of about 0.4 at total organic carbon (TOC)=15–20%. A strong chemical softening effect was found in shales containing even minor amounts of swelling (smectite) clay when saturated with aqueous solution. This effect results in a significant P‐wave anisotropy reduction as compared to dry and oil‐saturated shales. Since mature black shales are normally oil wet, this effect can only have a local significance restricted to the wellbore wall. Accurate measurements of phase velocities, including velocities at a 45° direction to the bedding plane, allow us to immediately calculate elastic stiffnesses and anisotropic parameters. Intrinsic (high pressure) properties of shales display an ε > δ > 0 relation. Introduction of the bedding‐parallel microcracks in overpressured shales results in a δ decrease when fully fluid saturated and a δ increase when partially gas saturated, with a characteristic effect on the shape of the P‐wave velocity surface at small angles of incidence. Filtering the contribution of the intrinsic anisotropy of shales, it is possible to estimate the pore fluid phase, microcrack density, and aspect ratio parameters using seismic anisotropy measurements.
Measurements are reported of third-order elastic constants for nine rocks (sandstones, limestones, granite) and a few synthetic materials at ambient room conditions. Along with velocity, porosity, density, and uniaxial strength, these data constitute a unique database of rock properties. Third-order elasticity successfully describes a variety of acoustic phenomenon in many materials, and measurements exist of third-order elastic constants in metals, plastics, and crystals. A key feature of third-order elasticity theory is that acoustic velocities vary with the stress in a material. In spite of the fact that velocities in rocks are extremely stress dependent, no measurements have previously been published of third-order elastic constants in sedimentary rocks.
Multisensory information competes for preferential access to consciousness. It remains unknown what neural processes cause one particular modality to win multisensory competition and eventually dominate behavior. Thus, in a paradigm in which human participants sought to make simultaneous auditory and visual detection responses, we sought to identify prestimulus and poststimulus neural signals that were associated with auditory and visual dominance on each trial. Behaviorally, visual detection responses preceded auditory responses more frequently than vice versa. Even when visual responses were preceded by auditory responses, they recovered more quickly from previous responses, indicating the dominance of vision over audition. Neurally, visual precedence was associated with increased prestimulus activity in the prefrontal cortex and reduced prestimulus activity in the default-mode network, and increased poststimulus connectivity between the prefrontal cortex and the visual system. Moreover, the dorsal visual stream showed not only increased activity in post-perceptual phases but also enhanced connectivity with the sensorimotor cortex, indicating the functional role of the dorsal visual stream in prioritizing the flow of visual information into the motor system. In contrast, auditory precedence was associated with increased prestimulus activity in the auditory cortex and increased poststimulus neural coupling between the auditory and the sensorimotor cortex. Finally, whenever one modality lost multisensory competition, the corresponding sensory cortex showed enhanced connectivity with the default-mode network. Overall, the outcome of audiovisual competition depended on dynamic interactions between sensory systems and both the fronto-sensorimotor and the default-mode network. Together, these results revealed both the neural causes and the neural consequences of visual and auditory dominance during multisensory competition.
Background Glioma‐related epilepsy (GRE) is defined as symptomatic epileptic seizures secondary to gliomas, it brings both heavy financial and psychosocial burdens to patients with diffuse glioma and significantly decreases their quality of life. To date, there have been no clinical guidelines that provide recommendations for the optimal diagnostic and therapeutic procedures for GRE patients. Methods In March 2017, the Joint Task Force for GRE of China Association Against Epilepsy and Society for Neuro‐Oncology of China launched the guideline committee for the diagnosis and treatment of GRE. The guideline committee conducted a comprehensive review of relevant domestic and international literatures that were evaluated and graded based on the Oxford Centre for Evidence‐Based Medicine Levels of Evidence, and then held three consensus meetings to discuss relevant recommendations. The recommendations were eventually given according to those relevant literatures, together with the experiences in the diagnosis and treatment of over 3000 GRE cases from 24 tertiary level hospitals that specialize in clinical research of epilepsy, glioma, and GRE in China. Results The manuscript presented the current standard recommendations for the diagnostic and therapeutic procedures of GRE. Conclusions The current work will provide a framework and assurance for the diagnosis and treatment strategy of GRE to reduce complications and costs caused by unnecessary treatment. Additionally, it can serve as a reference for all professionals involved in the management of patients with GRE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.